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For Jerome and Emily

The beauty of a snow crystal depends on its mathematical regularity and
symmetry, but somehow the association of many variants of a single
type, all related but no two the same, vastly increases our pleasure and
admiration.

D’ArcY THOMPSON
(On Growth and Form, Cambridge, 1917.)

En général je crois que les seules structures mathématiques intéressantes,
dotées d’une certaine légitimité, sont celles ayant une réalisation na-
turelle dans le continu.... Du reste, cela se voit trés bien dans des
théories purement algébriques comme la théorie des groupes abstraits
ou on a des groupes plus ou moins étranges apparaissant comme des
groupes d’automorphismes de figures continues.

RENE THOM
(Paraboles et Catastrophes, Flammarion, 1983.)



Preface

Numbers measure size, groups measure symmetry. The first statement comes
as no surprise; after all, that is what numbers “‘are for”. The second will be
exploited here in an attempt to introduce the vocabulary and some of the
highlights of elementary group theory.

A word about content and style seems appropriate. In this volume, the
emphasis is on examples throughout, with a weighting towards the symmetry
groups of solids and patterns. Almost all the topics have been chosen so as to
show groups in their most natural role, acting on (or permuting) the members
of a set, whether it be the diagonals of a cube, the edges of a tree, or even some
collection of subgroups of the given group. The material is divided into
twenty-eight short chapters, each of which introduces a new result or idea.
A glance at the Contents will show that most of the mainstays of a “first
course” are here. The theorems of Lagrange, Cauchy, and Sylow all have a
chapter to themselves, as do the classification of finitely generated abelian
groups, the enumeration of the finite rotation groups and the plane crystallo-
graphic groups, and the Nielsen—Schreier theorem.

I have tried to be informal wherever possible, listing only significant results
as theorems and avoiding endless lists of definitions. My aim has been to write
a book which can be read with or without the support of a course of lectures.
It is not designed for use as a dictionary or handbook, though new concepts
are shown in bold type and are easily found in the index. Every chapter ends
with a collection of exercises designed to consolidate, and in some cases fill
out, the main text. It is essential to work through as many of these as possible
before moving from one chapter to the next. Mathematics is not for spectators;
to gain in understanding, confidence, and enthusiasm one has to participate.

As prerequisites I assume a first course in linear algebra (including matrix
multiplication and the representation of linear maps between Euclidean
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spaces by matrices, though not the abstract theory of vector spaces) plus
familiarity with the basic properties of the real and complex numbers. It
would seem a pity to teach group theory without matrix groups available as
a rich source of examples, especially since matrices are so heavily used in
applications.

Elementary material of this type is all common stock, nevertheless it is not
static, and improvements are made from time to time. Three such should be
mentioned here: H. Wielandt’s approach to the Sylow theorems (Chapter 20),
James H. McKay’s proof of Cauchy’s theorem (Chapter 13), and the introduc-
tion of groups acting on trees by J.-P. Serre (Chapter 28). Another influence
is of a more personal nature. As a student I had the good fortune to study
with A.M. Macbeath, whose lectures first introduced me to group theory. The
debt of gratitude from pupil to teacher is best paid in kind. If this little book
can pass on something of the same appreciation of the beauty of mathematics
as was shown to me, then I shall be more than satisfied.

Durham, England M.AA.
September 1987
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CHAPTER 1

Symmetries of the
Tetrahedron

How much symmetry has a tetrahedron? Consider a regular tetrahedron T
and, for simplicity, think only of rotational symmetry. Figure 1.1 shows two
axes. One, labelled L, passes through a vertex of the tetrahedron and through
the centroid of the opposite face; the other, labelled M, is determined by the
midpoints of a pair of opposite edges. There are four axes like L and two
rotations about each of these, through 27n/3 and 4n/3, which send the tetra-
hedron to itself. The sense of the rotations is as shown: looking along the axis
from the vertex in question the opposite face is rotated anticlockwise. Of
course, rotating through 2n/3 (or 4n/3) in the opposite sense has the same
effect on T as our rotation through 4n/3 (respectively 27/3). As for axis M, all
we can do is rotate through #, and there are three axes of this kind. So far we
have (4 x 2) + 3 = 11 symmetries. Throwing in the identity symmetry, which
leaves T fixed and is equivalent to a full rotation through 2z about any of our
axes, gives a total of twelve rotations.

We seem to have answered our original question. There are precisely twelve
rotations, counting the identity, which move the tetrahedron onto itself. But
this is not the end of the story. A flat hexagonal plate with equal sides also has
twelve rotational symmetries (Fig. 1.2), as does a right regular pyramid on a
twelve sided base (Fig. 1.3). For the plate we have five rotations (through n/3,
2n/3, m, 4n/3, and 5n/3) about the axis perpendicular to it which passes
through its centre of gravity. In addition there are three axes of symmetry
determined by pairs of opposite corners, three determined by the midpoints of
pairs of opposite sides, and we can rotate the plate through n about each of
these. Not forgetting the identity, our total is again twelve. The pyramid has
only one axis of rotational symmetry. It joins the apex of the pyramid to the
centroid of its base, and there are twelve distinct rotations (through kn/6,
1 < k < 12, in some chosen sense) about this axis. Despite the fact that we
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Figure 1.2
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I k7, 1<k <12
: 6

Figure 1.3

have counted twelve rotations in each case, the tetrahedron, the plate, and the
pyramid quite clearly do not exhibit the same symmetry.

The most striking difference is that the pyramid possesses just one axis of
symmetry. A rotation of /6 about this axis has to be repeated (in other words,
combined with itself) twelve times before the pyramid returns to its original
position. Indeed, by suitable repetition of this basic rotation we can produce
all the other eleven symmetries. However, no single rotation of the plate or the
tetrahedron when repeated will give us all the other rotations.

If we look more carefully we can spot other differences, all of which have to
do, in one way or another, with the way in which our symmetries combine. For
example, the symmetries of the pyramid all commute with each other. That is
to say, if we take any two and perform one rotation after the other, the effect
on the pyramid is the same no matter which one we choose to do first. (These
rotations all have the same axis, so if, for the sake of argument, we rotate
through n/3 then through 5#/6, we obtain rotation through 77/6, which is also
the result of 57/6 first followed by #/3.) This is not the case for the tetrahedron
or the plate. We recommend an experiment with the tetrahedron. Labelling
the vertices of T as in Figure 1.4 enables us to see clearly the effect of a
particular symmetry. Think of the rotations r (2n/3 about axis L in the sense
indicated) and s (n about axis M). Performing first  then s takes vertex 2 back
to its initial position and gives a rotation about axis N. But first s then r moves
2 to the place originally occupied by 4, and so cannot be the same rotation. Do
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Figure 1.4

not fall into the trap of carrying the axis of s along with you as you do r first.
Both r and s should be thought of as rigid motions of space, each of which has
an axis that is fixed in space, and each of which rotates T onto itself.

Here is a third observation. There is only one rotation of the pyramid
which, when combined once with itself, gives the identity; namely, the unique
rotation through =n. The plate has seven such symmetries and the tetrahedron
three. These three rotations through = of the tetrahedron commute with one
another, but only one of the seven belonging to the plate commutes with all the
other six. Which one? Experiment until you find out.

To obtain a decent measure of symmetry, simply counting symmetries is not
enough; we must also take into consideration how they combine with each
other. It is the so-called symmetry group which captures this information and
which we now attempt to describe.

The set of rotational symmetries of T has a certain amount of ‘‘algebraic
structure”’. Given two rotations u and v we can combine them, by first doing v,
then doing u, to produce a new rotation which also takes T to itself, and which
we write uv. (Our choice of uv rather than vu is influenced by the convention
for the composition of two functions, where fg usually means first apply g,
then apply f.) The identity rotation, which we denote by e, behaves in a rather
special way. Applying first e then another rotation u, or first u then e, always
gives the same result as just applying . In other words ue = u and eu = u for
every symmetry u of T. Each rotation u has a so-called inverse u™!, which is
also a symmetry of T and which satisfies ¥ 'u = e and uu~! = e. To obtain
u~', just rotate about the same axis and through the same angle as for u, but
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in the opposite sense. (For example, the inverse of the rotation r is rr, because
applying r three times gives the identity.) Finally, if we take three of our
rotations u,v, and w, it does not matter whether we first do w then the
composite rotation uv, or whether we apply vw first and then u. In symbols this
reduces to (uv)w = u(vw) for any three (not necessarily distinct) symmetries

of T.

The twelve symmetries of the tetrahedron together with this algebraic
structure make up its rotational symmetry group.

EXERCISES

1:1;

1.2
1.3

1.4.

1.6.

1

1.10.

. Again with the notation of Figure 1.4, check that r~

Glue two copies of a regular tetrahedron together so that they have a
triangular face in common, and work out all the rotational symmetries
of this new solid.

Find all the rotational symmetries of a cube.

Adopt the notation of Figure 1.4. Show that the axis of the composite
rotation srs passes through vertex 4, and that the axis of rsrr is deter-
mined by the midpoints of edges 12 and 34.

Having completed the previous exercise, express each of the twelve
rotational symmetries of the tetrahedron in terms of r and s.

1 1

=rr,s =S8,
(rs)~* = srr,and (sr)™! = rrs.

Show that a regular tetrahedron has a total of twenty-four symmetries
if reflections and products of reflections are allowed. Identify a sym-
metry which is not a rotation and not a reflection. Check that this
symmetry is a product of three reflections.

Let g denote reflection of a regular tetrahedron in the plane determined
by its centroid and one of its edges. Show that the rotational symmetries,
together with those of the form ug, where u is a rotation, give all twenty-
four symmetries of the tetrahedron.

. Find all plane symmetries (rotations and reflections) of a regular pen-

tagon and of a regular hexagon.

. Show that the hexagonal plate of Figure 1.2 has twenty-four symmetries

in all. Identify those symmetries which commute with all the others.

Make models of the octahedron, dodecahedron, and icosahedron (see
Fig. 8.1). Try to spot as many symmetries of each of these solids as you
can.



CHAPTER 2

Axioms

Without further ado we define the notion of a group, using the symmetries of
the tetrahedron as guide. The first ingredient is a set. The second is a rule
which allows us to combine any ordered pair x, y of elements from the set and
obtain a unique “product” xy which also lies in the set. This rule is usually
referred to as a “‘multiplication” on the given set.

A group is a set G together with a multiplication on G which satisfies three
axioms:

(a) The multiplication is associative, that is to say (xy)z = x(yz) for any three
(not necessarily distinct) elements from G.

(b) There is an element e in G, called an identity element, such that xe=x=ex
for every x in G.

(c) Each element x of G has a (so-called) inverse x ~' which belongs to the set G
and satisfies x 'x = e = xx7'.

How does a formal definition couched in terms of axioms help? So far not at
all; indeed, if the only group turned out to be the rotational symmetry group
of the tetrahedron, we would be wasting our time. But this is not the case;
groups crop up in many different situations.

All of us take the additive group structure of the set of real numbers for
granted. Here the rule for combining an ordered pair of numbers x, y is simply
to add them to give x + y. We accept that (x + y) + z = x + (y + z) for any
three real numbers, there is an identity element, namely, zero, and — x is
clearly an inverse for the real number x. This example shows why we previ-
ously placed the words product and multiplication in quotation marks. The
rule which enables us to combine our elements is invariably referred to as a
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multiplication, but may have nothing to do with multiplication of numbers in
the usual sense.

A chemist may be interested in the amount of symmetry possessed by a
particular molecule. Methane (CH,), for example, can be thought of as
having a carbon nucleus at the centroid of a regular tetrahedron, with four
protons (hydrogen nuclei) arranged at the vertices. The benzene molecule
(C¢Hg), on the other hand, is modelled by a hexagonal structure with a carbon
and a hydrogen nucleus at each vertex. (Hexagonal symmetry is common in
nature, perhaps nowhere more pleasing than in the structure of a snow crystal;
see Fig. 2.1.) From our experience with the tetrahedron and the hexagon we
know that it matters in which order we combine two symmetries. Hence, the
continual reference to ordered pairs of elements. It matters whether we take
two elements of a group in the order x, y or in the opposite order y, x. In the
first case our rule gives the answer xy, in the second yx, and these two need not
be equal.

A physicist learning relativity meets the Lorentz group, whose elements

are matrices of the form
cosh u sinh u
. (»
sinh u coshu

and which are combined via matrix multiplication. Remember that cosh u,
sinh u are the hyperbolic functions, so called because the equations x = cosh
u, y = sinh u determine the hyperbola x? — y? = 1. They satisfy

cosh(u + v) = cosh u cosh v + sinh u sinh v,
sinh(u + v) = sinh u cosh v + cosh u sinh v
consequently,
[cosh u  sinh u][cosh v sinh v] 5 [cosh(u + ) sinh(u + v)]
sinh u coshu || sinhv coshv sinh(u + v) cosh(u + v)

and this product does give a matrix of the same form. The identity matrix fulfils
the requirements of an identity, and lies in the given set of matrices because it

is equal to
cosh0 sinh 0
sinh 0 cosh0
As an inverse for (») we can use
cosh(— u) sinh(— u)
sinh(— u) cosh(— u)

which has the required form. Since matrix multiplication is associative, we
have a group.

A mathematician thinking about Euclidean geometry finds he is studying
those properties of figures which are left unchanged by the elements of a



