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Chapter 1
Kinematics

Kinematics is the study of the geometry of motion: it deals with the mathematical de-
scription of motion in terms of position, velocity, and acceleration. Kinematics serves as a

prelude to dynamics which studies force as the cause of changes in motion.

1.1 Frame of Reference and Particle

1.1.1 Frame of reference and coordinate system

The world we live in is made of matter, from the largest bodies, such as the Earth, one of the
eight major planets in solar system of which the Sun is in the center, the galaxies in which the sun is
in one of the spiral arms, and the entire universe, to the smallest particles, such as molecules, atoms
and subatomic particles: electrons and nucleus composed of protons and neutrons. Each proton and
each neutron is made of two kinds of quarks called up quark and down quark. Although the objects
above differ in size by a factor of more than 10", they have a universality, being in endless motion,
and from this point of view, we say that the motion is absolute.

In the remainder of this chapter we shall discuss the position, speed, and acceleration of
various objects. To do this scientifically, the first two questions we must answer are; “What
position with respect to?” and “What velocity with respect to?”. Tf we choose different objects
as the reference to describe the motion of a given body. the indications will be different. For
example, if you stand on the ground in a train station and let a ball drop freely from your
hand, the motion of the ball seems to be along straight line by you, but along a parabola of
trajectory projected horizontally by the observer seating in a moving coach passing through the
station. From this point of view, we say that motion is a relative concept and it must always
be referred to a particular body that serves as a reference chosen by the observer. Since differ-
ent observers may use different [rames of reference, it is important to know how observations
made by different observers are related. For example., when we discuss motions on the surface
of the earth, this is the most cases in our course, and then it is convenient to take the earth’s
surface as our frame of reference. For the motion of the earth or other planets, a particular set
of stars, for instance, sun is a good choice, whereas for the motion of the electrons in an at-
om, the nucleus of the atom is preferred. You are free to choose the frame of reference, but in
all cases it is necessary to specify what reference frame is being used and you must always be

aware of your choice and be careful to make all your measurements with respect to it.
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In physics a frame of reference is usually pictured in terms of a coordinate system, consis-
ting of three mutually perpendicular axes, called the x, y and z axis, relative to which posi-
tion in space, velocity, acceleration and orbit can be specified. These three axes intersect at
the origin O of the coordinate system. In Fig. 1-1, let us consider two observers, one of them
on the sun and the other on the earth. Both observers are studying the same motion of an arti-
ficial satellite of the earth. To the observer on the earth using frame z’y’z’, the satellite ap-
pears to describe an almost circular path around the earth. To the solar observer using frame

xyz, the satellite’s orbit appears as a wavy line.

path of satellite _ - ™ z
relative to the Sun i : s

~< Earth

path of satellite >

relative to the Earth.

x  Sun path of the Earth
relative to the Sun

Fig. 1-1 The orbits of a satellite relative to the Earth and to the Sun
1. 1.2 Particles

The moving objects that we might examine are among countless possibilities. We shall
restrict our concentration on a simple case —translational motion of a particle first, which is
defined as the change of position of the particle as a function of time. In the case of an ideal
particle—a body with mass, but with no size and no shape, therefore position as a function of
time gives a complete description. We can represent an object as a particle (that is as a mass
point) if every small part of the object moves in exactly the same way. The concept of particle
is an ideal model, the motion of objects are usually more complicated. In some circumstances
we are not interested in the size, orientation, and internal structure of a body,and then we can
treat the body as a particle, concentrate on its translational motion and ignore all the other
motions. For example, we can describe the motion of a ship sailing down a river or a car trav-
eling on a street as a particle motion—{for most purposes it is sufficient to know the position of
the center of the ship or the car as a function of time.

You must be aware that an object can be treated as a particle in one situation but not in
another. The earth behaves pretty much like a particle if we are interested only in its orbital
motion around the sun. If we study the rotation of the earth revolving on its own axis, howev-
er, the earth is not a particle at all.

It is a very useful method in physics to simplify an object as an ideal model which helps us
to solve the major problem in a subject. You will use more ideal models in the other parts of

this course.
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1. 1.3 Time interval and time

It is necessary to distinguish two concepts, time interval and time. When we say time in
physics, we mean a give instant. For example, some scheduled flight takes off at 8:00 am
from Beijing, lands at 11:00 am on Kunming, 8 o’clock is an instant and so is 11 o’clock. The
3 hours that the whole flying lasts is a time interval. The position of a moving particle is cor-
responding to a given instant labeled with ¢ while the distance it passed is corresponding to a

given time interval labeled with Az.

1.2 Displacement, Velocity, and Acceleration

1. 2.1 Position vector and Position function

When we describe the motion of a particle, the first question is: “Where is it?”. In three
dimensional world, we need a vector to answer this question. We locate a particle by a vector r , ex-
tending from the origin of the coordinate system to the particle’s position as in Fig. 1-2. Thus,

r=xi+yjt+=zk (1-1D

in which, i , j and k are unit vectors and x, y and z are the components of the vector r. The
v components can be positive, negative or zero.

We shall define position, displacement, velocity and accel-

eration for the general case of three dimensions. To simplify

y , p :P the figures, we shall illustrate them in two dimensions in the
x ’ rest of this chapter.
/ O\‘x\ | * Mechanical motion is defined as the process of changes in
/ """""" = position with time. In principle, the position vector can be cor-
z related with the time by means of a vector function
Fig. 1-2  Position vector r=r( (1-2a)

Its three components are written by the following scalar functions
x=x@), y=y@), =z==z®) (1-2b)
Eq. (1-2a) or Eq. (1-2b) 1is defined as the position function that determines the location of a
particle at any given time. Combining Eq. (1-1)and Eq. (1-2b), we have
r(e) =x@i+y@j+=z(k (1-3)
which is equivalent with Eq. (1-2a) and Eq. (1-2b).
The path equation can be obtained by eliminating ¢ from Eq. (1-2b)
flx,y,2) =0
If the path of a particle is a straight line, the motion is called as a rectilinear motion;if the

path is a curve, the motion is called as a curvilinear motion,
1.2.2 Displacement

Displacement is the change in position during a given time interval. In Fig. 1-3, at time ¢,

. . . . B W —_— . . .
the particle is at point A, given by position vector r =0A. At a later time ¢, , the particle will
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be at B with r , =OB. Although the particle has moved along the arcA/E = As, the displace-
ment is the vector given by
AB =O0B—0A

or

Ar=r —r (1-4)
note that the displacement indicates the change in posi-
tion not in the path length over the same time interval. As
Displacement is a vector, its magnitude | Ar | is the . Ar
length of the chord ABj;the path is a scalar As, the length
of the arc AB. In most cases, |Ar |#As (Fig. 1-3), only in ’ "
the limiting case of Az—0, |Ar | can be regarded equal to

As. For example, a man walks from point A along the @ *

rim of a circle of radius R for half a round, his displace- Fig. 1-3  Displacement Ar during
ment is 2R, but path is xR. A particle moves back and time interval At
forth in x axis for one period, its displacement is zero, but path equals to 2A (A is the ampli-

tude). You should also be aware of the difference between | Ar | and Ar.
1.2.3  Velocity

The second question to describe the motion of a particle is: “How fast is the change of po-
sitions?”. If Aris the displacement that occurs during the time interval Az, the average veloci-
ty for this interval is defined as

Ar
At

The direction of average velocity points in the same direction of displacement (Fig. 1-3) ; the magni-

v =

tude of it equals | Ar| /At. Obviously,average velocity is related to the specified time interval Az,and
it takes into account only the net displacement in the time interval Az,ignores the details of the mo-
tion,and gives no credits for back and forth motion or the length of the path.

To describe the motion of a particle at a given time ¢ or at a given point, we must make Az
very small. The instantaneous velocity at time ¢ is obtained by evaluating Ar /At in the limit

that At approaches zero

. Ar __ dr
v = Brr}) N (1-5)
Thus, the instantaneous velocity is defined as the time derivation of the position vector.
L = B Direction of instantaneous velocity:
To determine the direction of instantaneo-
3 us velocity v at point A, let us see Fig. 1-4.
Ar

When Atr approaches 0, point B approaches
point A, as indicated by B', B”, +=+ with the
vector AD changing continuously in both

Fig. 14 Velocity is tangent to the path at A magnitude and direction, in the limit when B
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is very close to A, AB=Ar coincides in direction with the tangent at A, therefore, the instan-

taneous velocity is a vector tangent to the path,and points to the advance direction.
Magnitude of instantaneous velocity :

Substituting r from Eq. (1-3) into Eq. (1-5) gives

v= it yj+ et = B9 1 45 (1-6)
or
v=v,dt+v,j + vk (1-7
As we see, the three components of the velocity vector are given by
_dx d _ dz

(1-8)

V.

Ve = 7.9 Vy — = =
; dt . de’ dt

And the magnitude of the velocity is
v= I+ +E (1-9)
Fore the case of the motion in a plane, angle § formed between v and + . direction in deter-
mined by tand = v, /v, as shown in Fig. 1-5, usually used to indicate the direction of velocity.
Velocity and speed:
On the other hand. the magnitude of velocity vector
can be written as

= i IA"|
v

Let As represent the path length over Az, which is given

(1-10)

dr
v=lvl=|g

O X

Fig. 1-5 Velocity in two dimensions by the length of the arc AB (Fig. 1-3),and the closer B

is to A, the closer magnitude of Ar is to As, that is

. lAr]
};ir(l) As 1
Therefore
o — lim LArL i A _ ds (1-11)

a0 At a0 At dt

Where As/At,the path length divided by the time taken,is called the average speed, so ds/dz is
the instantaneous speed. Note that speed is a scalar,and Eq. (1-11) means that the magnitude
of instantaneous velocity equals instantaneous speed, which can be briefly called as velocity and
speed.

The unit of speed is m/s, that is, meter per second in SI system.

Example 1-1 The position of a particle moving in x -y plane is given by + = R + Rcoswt,
y = R sinwt, here R = 1m, w = (x/4)s '. Calculate:

(1) the path function f (x, y)=0;

(2) velocity at any time;

(3) position vector at ¢ = 0 and t = 6s, the displacement Ar and path length As during
this time interval.

Solution (1) Rearrange the position function as
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r—R = Rcoswt, y = R sinwt
then we have
(r—R)*+y* = R?
This is the path function of a circle with radius R and the position of center locates at (R,0) as
Fig. 1-6 shows.
(2) From Eq. (1-8)

T = dx =— Rw sinwt
dz
v, = dy _ Rw coswt
- dt A X
v =— Rw sinwti + Rw coswtj r E Ar
1
v= /1t + v, = Rw = %m/s B(R. —R)
which means that the motion is a circular motion with con- Fig. 1-6  For Example 1-1

stant speed. The angle 6 between v and + x direction is
given by

tand = v,/ v, =— cotwt
By inspection of the signs of v, and v, at the particular time, you can determine which quad-
rant the angle is in.

(3) When ¢t = 0, we have
ro,=2Ri
represented by OA, andatz = 6 s
r, = (R+Rcos )i+ Rsin5nj = Ri —Rj

represented by OB, the displacement during Az = 6s is

Ar=r —r, =—Ri—Rj
represented by AB in Fig. 1-6.

lar|= V(—R)?*+(—R)? =V2R=1.41m
While the path length during the same Az is

AszarC@:%nR=4.7lm

1.2.4 Acceleration

The path of a particle moving in two or three dimensions is a curve in general, its velocity
changes in both of magnitude and direction. The magnitude of the velocity changes when the
particle speeds up or slows down. The direction of the velocity changes because the velocity is
tangent to the path and the path bend continuously. Fig. 1-7 indicates the velocity v at time ¢,
and v, at t,;, corresponding to the position A and B, respectively. The change in velocity dur-
ing the time interval At = ¢, — ¢, is represented by Av in the vector triangle in which v +Av
=uv,,then Av =v,—w. To describe the average rate of change in velocity for the time inter-

val At, the average acceleration is defined by
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Av
At

Using the same method as in definition of the velocity, the instantaneous acceleration at time

a =

t, refereed simply as acceleration is given by
=lim22 =¢2 (1-12)

which is the time derivation of velocity vector.
Direction of acceleration:

Acceleration vector has the same direction as the limit direction of the change in velocity
when At—>0, which is always pointing toward the concavity of the curve, and because Awv is
always in the direction in which the curve bends, as shown in Fig. 1-7. Suppose that the direc-
tion of acceleration is at an angle of « to the velocity, a<(90°, a=>90°, and «= 90°correspond-
ing to thecasesof |v, | >|v |, |v,|<<|w|,and | v, | =] v | ,respectively. It is
important to be aware that there is an acceleration whenever the velocity changes in either

magnitude or direction.

v Magnitude of acceleration:
From Eq. (1-5), we can also write Eq. (1-12)
in the form
—dv _dr (1-13)
? Substituting He, (1-2) into  Eq <1—13> gives
Fig. 1-7 Acceleration in curvilinear motion a— 4z; + j4d=
ds d/
or
a=a,ta,jtak (1-14)
The three components of acceleration are given by
a, = ‘iz, aysztz, az:%? (1-15)

And the magnitude of the acceleration is

a= ai+al+ad (1-16)
The unit of acceleration is m/s? in SI system.
In the case of a motion in x-y plane, suppose ¢ is the angle formed by a and +x direc-
tion, thus

tan @ = <2 (1-17)

ar
Example 1-2 Suppose the position function is the same as in Example 1-1. Find the accel-
eration at any time.
Solution From the result of Example 1-1,we have

dv,
dz

a, = =— Rw?cos wt
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_ o,

Ay = di =— Rw*sinwt
2
a = v/at+al =Ruw® = % m/s* = 0. 62 m/s*

which means that the magnitude of a is a constant, the direction of it can be represented by an-

gle @ between a and +x direction, and

—— a\’
tang — — — tan wt
For example, if t = 3 s, tan ¢ = tan %n =—1, because a, >0, a,<Z 0, so thata =— /4, in

the forth quadrant,as shown in Fig. 1-8. On the other hand, we can rewrite a, and a, as

a, =— (r —R)o*, ay, =— yw*

that is
a=——o’[(x—R)i+ yj]
Note that, there is a vector
R=(x—R)i+yj
which is pointing from the center of the circle to the position of particle in Fig. 1-8, therefore
a=—u'R
which means the acceleration is always pointing toward the center of the circle. So it is called

as centripetal acceleration.

Fig. 1-8 For Example 1-2 Fig. 1-9 For Example 1-3

Example 1-3 A seaman standing on a cliff, pulls a boat by a pulley, as shown in Fig. 1-9.
Suppose that the height of the cliff is 2, the rate of the rope pulled is «. Find:

(1) the velocity of the boat;

(2) the acceleration of the boat.

Solution Because the motion of the boat is in one dimension, set x axis pointing right,

choose the origin at the foot point of the pulley, and let / representing the variable length of

the rope at any time. So that, position vector of the boat is r = xi, note that z = v/ [* —h’ in

which = and [/ are changing with time, take time derivation of x, we have

4
e ld W

dt 72 _p2 x



