PEARSON

Prentice
Hall

Volume 1—Fundamentals, BE

JAVA 2 i% IL) £ 2

$F1%:. EMiE (6, #EMW)

EERUFLRE

PRI]I]UETNITY

%»%&&EMIII—H’&

(¥() Cay S. Horstmann, Gary Cornell #
ALERZE b tt

Java2 B D 4 2
1% EplE
(5 6 15T, BEN)

Cay S. Horstmann ..

(%) Gary Cornell

AERF iR
b =

English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA
LIMITED and TSINGHUA UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: Core Java 2, Volume |—Fundamentals, 6E, by Cay S.
Horstmann, Gary Corr.ell, Copyright © 2003

All Rights Reserved.
Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Prentice Hall PTR.

This edition is authorized for sale and distribution only in the People’s Republic of
China (excluding the Special Administrative Region of Hong Kong, Macao SAR and
Taiwan).

A5 EIRR (1 Pearson Education #3245 3746 K2 HHRCRE AR R AT

For sale and distribution in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).
RTFHREARKMEREA(FEFEPEESE. BRIV ITHEFAH
&5 [X) %‘é’%iﬁﬁ

e AU EAER 80 Y T 01-2003-4881

ABHMENEE Pearson Education (FEHE HIRER) BABFNFRE, T
MEENSHE

EBERGE (CIP) #iE

Java 2 i FE 281 & hin.ﬁm—Core Java 2, Volume 1—Fundamentals. 3 6 K/
CF) RS, OF) BER/RE LA —Jbal: WAL, 2003
ISBN 7-302-07198-5

[J L.OE- @F- lJAVA iE 5 —REEF—% V. TP3I2

o RS P T CIP s #%7 (2003) 5 078277 %5
H AR & HERFEH G M HE: dEEERKEFRE
hitp://www. tup. com. cn H§ %5 : 100084
i B #. 01062770175 EPABRS: 01062776969
XFRERIE . HIRE
HEIEIT: L HFRITAF
BN Rl . tEFHREIRI
% 4T F. tEAH B BRI
% 17 &: FEHESEIREIT
F & 148 x210 EPdk. 23.5
B k. 200349 A% 1 MR 2004 452 A5 2 IEDR
2. ISBN 7-302-07198-5/TP + 5240
B #. 3001 ~5000
£ f#:49.00 T

A GOAFAESCT AN TR A B R T B 0T SR B PR R, W S AR K
o R R R R . 6 R FLEE : (010)62770175-3103 #1(010)62795704

©2003 Sun Microsystems, Inc.—

Printed in the United States of America.

901 San Antonio Road, Palo Alto, California
943034900 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or related documentation may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The products described may be protected by one or more U.S. patents, foreign patents, or
pending applications.

TRADEMARKS—Hot]Java, Java, Java Development Kit, Solaris, SPARC, SunOS, and Sunsoft
are trademarks of Sun Microsystems, Inc. All other products or services mentioned in this
book are the trademarks or service marks of their respective companies or organizations

The publisher offers discounts on this book when ordered in bulk quantities.

For more information, contact Corporate Sales Department, Prentice Hall PTR,

One Lake Street, Upper Saddle River, NJ 07458. Phone: 800-382-3419; FAX: 201- 236-7141.
E-mail: corpsales@prenhall.com.

Editorial / production supervision: Navta Associates
Project coordinator: Anne Trowbridge

Cover design director: Jerry Votta

Cover designer: Nina Scuderi

Cover illustration: Karen Strelecki

Manufacturing manager: Alexis R. Heydt
Marketing manager: Debby van Dijk

Acquisitions editor: Gregory G. Doench

Sun Microsystems Press Publisher: Michael Llwyd Alread

10 9 8 7 6 5 4 3 2 1
ISBN 0-13-047177-1

Sun Microsystems Press
A Prentice Hall Title

Tables
1-1:

2-1:
3-1:
3-2:
3-3:
3-4:
3-5:

4-1:

7-1:
7-2:
8-1:
8-2:
8-3:
8-4:
9-1:

List of_[:ables,
Code Examples,
and Figuves

The Growth of the Java Standard
Edition AP, 11

Java directory tree, 18

Java integer types, 39
Floating-point types, 40

Special characters, 41

Operator precedence, 49

Growth of an investment at
different interest rates, 83

UML notation for class
relationships, 93

Standard colors, 258

System colors, 260

Event handling summary, 298
Sample cursor shapes, 307
Predefined action table names, 317
Input map conditions, 319

The accessor methods of the
ButtonModel interface, 340

: MaskFormatter symbols, 361

xi

10-1:
10-2:
10-3:
11-1:
11-2:

11-3:
11-4:
11-5:
12-1:

12-2:
12-3:

12-4:
12-5:

: Adding a Spring to an Over-

constrained Component, 441
Applet positioning attributes, 503
showDocument arguments, 515
jar program options, 524

Timing data, 576

File handler configuration
parameters, 584

Log file pattern variables, 584
HPROF options, 609

Debugging commands, 616

Basic character encodings (in
rt.jar), 634

Extended Character Encodings
(in i18n.jar), 634

Required character encodings, 697
Regular expression syntax, 700
Predefined character class
names, 701

)
cam
=

Code Examples

2-1:
2-2:
2-3:
2-4:
3-1:
3-2:
3-3:
3-4:
3-5:
3-6:
3-7:
3-8:
3-9:
4-1:
4-2:
4-3:
4-4:
4-5:
4-6:
4-7:
5-1:
5-2:
5-3:
5-4:
5-5:
5-6:
5-7:
5-8:
6-1:
6-2:
6-3:
: InnerClassTest java, 218
6-5:

Welcome java, 20
ImageViewer.java, 28
WelcomeApplet.html, 30
WelcomeApplet.java, 32
FirstSample.java, 38
InputTest.java, 57
Retirement.java, 65
Retirement2 java, 66
LotteryOdds.java, 70
BigIntegerTest.java, 75
LotteryDrawing java, 80
CompoundInterest.java, 83
LotteryArray.java, 86
CalendarTest.java, 102
EmployeeTest.java, 106
StaticTest.java, 117
ParamTest.java, 122
ConstructorTest java, 129
PackageTest.java, 134
Employee.java, 134
ManagerTest.java, 150
PersonTest.java, 160
EqualsTest.java, 167
ArrayListTestjava, 175
ReflectionTest java, 185
ObjectAnalyzerTest.java, 190
ArrayGrowTest.java, 193
MethodPointerTestjava, 197
EmployeeSortTest.java, 203
TimerTest.java, 209
CloneTest.java, 213

AnonymousInnerClassTest.java,
226

: StaticInnerClassTest .java, 228
6-7:
7-1:
7-2:
7-3:
7-4:
7-5:
7-6:
7-7:
8-1:

ProxyTest.java, 232
SimpleFrameTest.java, 239
CenteredFrameTest java, 244
NotHelloWorld.java, 250
DrawTest.java, 256
FillTest.java, 261
FontTest.java, 266
ImageTest.java, 272
ButtonTest java, 282

8-2:
8-3:

8-5:
8-6:
8-7:
9-1:
9-2:
9-3:
9-4:
9-5:
9-6:
9-7:
9-8:
9-9:
9-10:
9-11:
9-12:
9-13:
9-14:
9-15:
9-16:
9-17:
9-18:
9-19:
9-20:
9-21:
9-22:
10-1:
10-2:
10-3:
10-4:
10-5:
10-6:
10-7:
10-8:
10-9:

10-10
10-11

10-12:
10-13:

10-14
10-15

Core Java

PlafTest.java, 290
Sketch.java, 302

: MouseTest.java, 309
ActionTestjava, 320
MulticastTest java, 325
CustomEventTest.java, 331
Calculatorjava, 347
TextTestjava, 353
FormatTest,java, 363
TextAreaTest.java, 372
TextEditTest.java, 376
CheckBoxTest.java, 379
RadioButtonTest.java, 383
BorderTest.java, 386
ComboBoxTest.java, 390
SliderTest.java, 394
SpinnerTest.java, 400
MenuTest.java, 416
ToolBarTest java, 422
BoxLayoutTest.java, 428
FontDialog java, 434
SpringLayoutTest.java, 441
CircleLayoutTestjava, 447
OptionDialogTest java, 455
DialogTest.java, 464
DataExchangeTest java, 468
FileChooserTest.java, 478
ColorChooserTest.java, 486
NotHelloWorldApplet.java, 494
Calculator.html, 497
CalculatorApplet.java, 497
PopupCalculatorApplet.java, 501
Chart.java, 508
Bookmark.html, 516
Left.html, 517

Right.html, 517

Bookmark java, 517

: AppletFrame java, 521

: CalculatorAppletApplication java,
522

ResourceTest.java, 529
WebStartCalculator.java, 537
: CustomWorld java, 547

: SystemlInfo.java, 550

Tables, Examples, and Figures

10-16: PreferencesTest.java, 553
11-1: StackTraceTestjava, 570
11-2: ExceptTest.java, 572
11-3: ExceptionalTest.java, 578
11-4: LogginglmageViewer.java, 587
11-5: ConsoleWindow.java, 601
11-6: EventTracerjava, 603
11-7: EventTracerTestjava, 605
11-8: RobotTest.java, 606
11-9: WordCount.java, 612

11-10: BuggyButtonTestjava, 614

11-11: BuggyButtonFrame java, 614

Figures
1-1: The Jmol applet, 9
2-1: Compiling and running
Welcome.java, 19
2-2: Starting Sun ONE Studio, 21
2-3: The edit window of Sun ONE
Studio, 22
2-4: The output window of Sun ONE
Studio, 22
2-5: Error messages in Sun ONE
Studio, 23
2-6: Starting a new program in Sun
ONE Studio, 23
2-7: Compiling a program with
Emacs, 24
2-8: Running a program from within
Emacs, 25
2-9: Locating compilation errors in
TextPad, 26
2-10: Running a Java program from
TextPad, 26
2-11: Running the ImageViewer
application, 27
2-12: The WelcomeApplet applet as
viewed by the applet viewer, 30
2-13: Running the WelcomeApplet
applet in a browser, 31
3-1: Legal conversions between
numeric types, 48
3-2: The three panes of the API
documentation, 54
3-3: Class description for the string
class, 54

11-12:
12-1:
12-2:
12-3:
12-4:
12-5:
12-6:
12-7:
12-8:
12-9:

12-10:

12-11:

3-5:
3-6:
3-7:
: Flowchart for the if/else

3-9:
3-10:
3-11:

3-12:
3-13:

3-14:
3-15:
3-16:
4-1:
4-2:

4-3:

&

BuggyButtonPanel java, 615
ZipTest.java, 642
DataFileTest.java, 651
RandomFileTest java, 657
ObjectFileTest java, 662
ObjectRefTest java, 672
SerialCloneTest.java, 682
FindDirectories.java, 686
CRCjava, 692

NIOCRC java, 692
RegexTest java, 702
HrefMatch java, 704

: Method summary of the string

class, 55

Detailed description of a String
method, 55

An input dialog, 56

Flowchart for the if statement, 61

statement, 62

Flowchart for the if/else if
(multiple branches), 63

Flowchart for the while

statement, 64

Flowchart for the do/while
statement, 67

Flowchart for the for statement, 68
Flowchart for the switch
statement, 72

Copying an array variable, 78
Copying values between arrays, 78
A two-dimensional array, 85

A class diagram, 94

Procedural vs. OO

programming, 95

Creating a new object, 97

Object variables that refer to the
same object, 97

: Returning a reference to a mutable

data field, 112

: Modifying a numeric parameter

has no lasting effect, 119

: Modifying an object parameter has

a lasting effect, 120

(3

4-8:

4-9:

5-1:

6-1:
6-2:
6-3:

7-1:

7-2:

7-4:
7-5:

7-6:
7-7:

7-8:
7-9:

7-10:

7-11:
7-12:
7-13:
7-14:

7-15:

8-1:
8-2:
8-3:
8-4:
8-5:

8-7:
8-8:

Swapping object parameters has no
lasting effect, 121

Changing the warning string in an
applet window, 138

Employee inheritance hierarchy,
152

: Inheritance diagram for Person

and its subclasses, 158

Copying and cloning, 210

A shallow copy, 211

An inner class object has a refer-
ence to an outer class object, 217
The Windows look and feel of
Swing, 237

The Motif look and feel of
Swing, 237

: The Metal look and feel of

Swing, 238

The simplest visible frame, 239
Inheritance hierarchy for the
JFrame and JPanel classes, 242
A simple graphical program, 246
The internal structure of a
JFrane, 247

2D rectangle classes, 253

The bounding rectangle of an
ellipse, 254

Relationships between the shape
classes, 254

Rectangles and ellipses, 255
Filled rectangles and ellipses, 261
Typesetting terms illustrated, 265
Drawing the baseline and string
bounds, 266

Window with tiled graphics
image, 271

Event notification, 279

A panel filled with buttons, 280
Switching the Look and Feel, 290
A window listener, 293
Inheritance diagram of the AWT
event classes, 295

: Relationship between event sources

and listeners, 299
A sketch program, 302
A mouse test program, 305

8-9:

8-10

Core Java

Buttons display the icons from the
Action objects, 318

: All frames listen to the Close all
command, 324

8-11: Using custom timer events to simu-

9-1:
9-2:

9-3:
9-4:

9-5:
9-6:

9-7:

9-8:
9-9:

9-10:

9-11:
9-12:
9-13:
9-14:
9-15:
9-16:
9-17:
9-18:
9-19:
9-20:
9-21:

9-22:
9-23:
9-24:

late rainfall, 330

Model and view of a text field, 336

Two separate views of the same

model, 337

A window place, 338

Interactions between model, view,

and controller objects, 339

A panel with three buttons, 341

A panel with six buttons managed

by a flow layout, 342

Changing the panel size rearranges

the buttons automatically, 342

Border layout, 343

A single button managed by a

border layout, 345

A panel placed at the south end of

the frame, 345

A calculator, 346

Text field example, 351

The FormatTest program, 363

A text area, 371

Testing text editing, 375

Check boxes, 379

A radio button group, 382

Testing border types, 386

A combo box, 389

Sliders, 393

Several variations of the JSpinner

component, 398

A menu with a submenu, 406

Icons in menu items, 409

A checked menu item and menu

items with radio buttons, 410

: A pop-up menu, 411

: Keyboard mnemonics, 413

: Accelerators, 414

: Disabled menu items, 415

;. Atool bar, 419

: Dragging the tool bar, 420

: Dragging the tool bar to another
border, 420

Tables, Examples, and Figures

9-32:
9-33:
9-34:

Detaching the tool bar, 420
Actool tip, 421

Inheritance hierarchy for the
Component class, 425

Box layouts, 428

Font dialog box, 431

Dialog box grid used in design, 431
A spring, 437

Summing springs, 437

Equally Spaced Buttons, 438
Springs and Struts, 439

Lining up Columns, 439
Horizontal springs attached to a
component, 440

Circle layout, 446

Geometric traversal order, 451
An option dialog, 453

The OptionDialogTest

program, 454

An About dialog box, 463
Password dialog box, 466

File chooser dialog box, 473

A file dialog with a preview
accessory, 478

The “swatches” pane of a color
chooser, 484

The HSB pane of a color
chooser, 484

The RGB pane of a color chooser,
485

Applet inheritance hierarchy, 493
Viewing an applet in the applet
viewer, 495

Viewing an applet in a browser, 496
A calculator applet, 497

A pop-up window inside a
browser, 501

Applet alignment, 503

A chart applet, 507

A bookmark applet, 516

The calculator as an
application, 519

10-10: The calculator as an applet, 519

9-35:
9-36:
9-37:
9-38:
9-39:
9-40:
9-41:
9-42:
9-43:

9-44:
9-45:
9-46:
947:

9-48:
9-49:
9-50:
9-51:

9-52:

9-53:

9-54:

10-1:
10-2:

10-3:
104:
10-5:

10-6:
10-7:
10-8:
10-9:

10-11:

10-12:
10-13:

10-14:

10-15:

10-16:

10-17:

11-1:
11-2:

11-3:

11-4:
11-5:

11-6:

11-7:
12-1:

12-2:
12-3:
12-4:
12-5:
12-6:
12-7:

12-8:
12-9:

12-10:

12-11:

=z
Displaying a resource from a JAR
file, 527
Launching Java Web Start, 533
The Calculator delivered by Java
Web Start, 533
The Java Web Start Application
Manager, 534
A Java Web Start Security
Advisory, 534
The WebStartCalculator
Application, 537
The customized Hello World
program, 546
Exception hierarchy in Java, 559
A program that generates
exceptions, 572
Alog handler that displays records
in a window, 584
The console window, 601
The EventTracer class at
work, 602
Breakpoints in the Sun ONE Studio
debugger, 619
Stopping at a Breakpoint, 620
Input and Output stream
hierarchy, 625
Reader and Writer hierarchy, 626
A sequence of filtered stream, 628
The ZipTest program, 642
Two managers can share a mutual
employee, 669
Here, Harry is saved three
times, 670
An example of object
serialization, 671
Objects saved in random order, 672
The graphical version of the
serialver program, 680
Reading an object with fewer data
fields, 681
Reading an object with more data
fields, 682

P?“efa:{:ﬂ

To the Reader

In late 1995, the Java programming language burst onto the Internet scene and gained
instant celebrity status. The promise of Java technology was that it would become the
universal glue that connects users with information, whether that information comes from
Web servers, databases, information providers, or any other imaginable source. Indeed,
Java is in a unique position to fulfill this promise. It is an extremely solidly engineered
language that has gained acceptance by all major vendors, except for Microsoft. Its built-in
security and safety features are reassuring both to programmers and to the users of Java
programs. Java even has built-in support that makes advanced programming tasks, such as
network programming, database connectivity, and multithreading, straightforward.

Since 1995, Sun Microsystems has released five major revisions of the Java Software
Development Kit. Over the course of the last 7 years, the Application Programming
Interface (API) has grown from about 200 to just over 3,000 classes. The API now spans
such diverse areas as user interface construction, database management, international-
ization, security, and XML processing.

The book you have in your hand is the first volume of the sixth edition of the Core Java book.
With the publishing of each edition, the book followed the release of the Java Software Devel-
opment Kit as quickly as possible, and each time, we rewrote the book to take advantage of the
newest Java features.

As with the previous editions of this book, we still target serious programmers who want to put
Java to work on real projects. We still guarantee no nervous text or dancing tooth-shaped charac-
ters. We think of you, our reader, as a programmer with a solid background in a programming lan-
guage. But you do not need to know C++ or object-oriented programming. Based on the responses
we have received to the earlier editions of this book, we remain confident that experienced Visual
Basic, C, or COBOL programmers will have no trouble with this book. (You don’t even need any
experience in building graphical user interfaces for Windows, Unix, or the Macintosh.)

What we do is assume you want to:
e Write real code to solve real problems;

and

Xvii

)
I, Core Java
=
¢ Don'tlike books filled with toy examples (such as kitchen appliances or fruit trees).

In this book you will find lots of sample code that demonstrates almost every language and
library feature that we discuss. We kept the sample programs purposefully simple to focus
on the major points, but, for the most part, they aren’t fake and they don’t cut corners.
They should make good starting points for your own code.

We assume you are willing, even eager, to learn about all the advanced features that Java
puts at your disposal. For example, we give you a detailed treatment of:

Object-oriented programming

Reflection and proxies

Interfaces and inner classes

The event listener model

Graphical user interface design with the Swing Ul toolkit

Exception handling

Stream input/output and object serialization

We still don’t spend much time on the fun but less serious kind of Java programs whose
sole purpose is to liven up your Web page. There are quite a few sources for this kind

of material already—we recommend John Pew’s book Instant Java, also published by

Sun Microsystems Press.

Finally, with the explosive growth of the Java class library, a one-volume treatment of all
the features of Java that serious programmers need to know is no longer possible. Hence,
we decided to break the book up into two volumes. The first volume, which you hold in
your hands, concentrates on the fundamental concepts of the Java language, along with the
basics of user-interface programming. The second volume goes further into the enterprise
features and advanced user-interface programming. It includes detailed discussions of:

* Multithreading * Network programming
e Distributed objects * Collection classes

¢ Databases * Advanced graphics

¢ Advanced GUI components ¢ Internationalization

¢ Native methods e JavaBeans

¢ XML Processing

When writing a book, errors and inaccuracies are inevitable. We’d very much like to know
about them. But, of course, we’d prefer to learn about each of them only once. We have put
up a list of frequently asked questions, bugs fixes, and workarounds in a Web page at
http: //www.horstmann.com/corejava.html. Strategically placed at the end of the FAQ
(to encourage you to read through it first) is a form you can use to report bugs and suggest
improvements. Please don’t be disappointed if we don’t answer every query or if we don’t
get back to you immediately. We do read all e-mail and appreciate your input to make
future editions of this book clearer and more informative.

We hope that you find this book enjoyable and helpful in your Java programming.
About This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other pro-
gramming languages. We explain what the designers of the language set out to do and
to what extent they succeeded. Then, we give a short history of how Java came into
being and how it has evolved.

In Chapter 2, we tell you how to download and install the Java SDK from http: //java.sun.
com/j2se. We also describe how to download and install the Core Java program examples for

)
Preface <>,
=

this book from www . phptr . com/ corejava. Then we guide you through compiling and running
three typical Java programs, a console application, a graphical application, and an applet.
Chapter 3 starts the discussion of the Java language. In this chapter, we cover the basics: variables,
loops, and simple functions. If you are a C or C++ programmer, this is smooth sailing because
the syntax for these language features is essentially the same as in C. If you come from a non-C
background such as Visual Basic or COBOL, you will want to read this chapter carefully.
Object-oriented programming (OOP) is now in the mainstream of programming practice, and
Java is completely object-oriented. Chapter 4 introduces encapsulation, the first of two funda-
mental building blocks of object orientation, and the Java language mechanism to implement it,
that is, classes and methods. In addition to the rules of the Java language, we also give advice on
sound OOP design. Finally, we cover the marvelous javadoc tool that formats your code com-
ments as a set of hyperlinked web pages. If you are familiar with C++, then you can browse
through this chapter quickly. Programmers coming from a non-object-oriented background
should expect to spend some time mastering OOP concepts before going further with Java.
Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces the other,
namely, inheritance. Inheritance lets you take an existing class and modify it according to your
needs. This is a fundamental technique for programming in Java. The inheritance mechanism in
Java is quite similar to that in C++. Once again, C++ programmers can focus on the differences
between the languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you go beyond the
simple inheritance model of Chapter 5. Mastering interfaces allows you to have full access to
the power of Java’s completely object-oriented approach to programming. We also cover a
useful technical feature of Java called inner classes. Inner classes help make your code cleaner
and more concise.

In Chapter 7, we begin application programming in earnest. We show how you can make
windows, how to paint on them, how to draw with geometric shapes, how to format text in
multiple fonts, and how to display images.

Chapter 8 is a detailed discussion of the event model of the AWT, the abstract windows toolkit.
(We discuss the event model that was added to Java 1.1, not the obsolete and simplistic 1.0
event model.) You'll see how to write the code that responds to events like mouse clicks or key
presses. Along the way you'll see how to handle basic GUI elements like buttons and panels.

Chapter 9 discusses the Swing GUI toolkit in great detail. The Swing toolkit allows you to build
a cross-platform graphical user interface. You'll learn all about the various kinds of buttons, text
components, borders, sliders, list boxes, menus, and dialog boxes. However, some of the more
advanced components are discussed in Volume 2.

After you finish Chapter 9, you finally have all mechanisms in place to write applets, those mini-
programs that can live inside a Web page, and so applets are the topic of Chapter 10. We show
you a number of useful and fun applets, but more importantly, we look at applets as a method of
program deployment. We then describe how to package applications in JAR files, and how to
deliver applications over the internet with the Java Web Start mechanism. Finally, we explain how
Java programs can store and retrieve configuration information once they have been deployed.

Chapter 11 discusses exception handling, Java’s robust mechanism to deal with the fact that
bad things can happen to good programs. For example, a network connection can become
unavailable in the middle of a file download, a disk can fill up, and so on. Exceptions give
you an efficient way of separating the normal processing code from the error handling. Of
course, even after hardening your program by handling all exceptional conditions, it still
might fail to work as expected. In the second half of this chapter, we give you a large num-
ber of useful debugging tips. Finally, we guide you through sample sessions with various

d)i Core Java
=

tools: the JDB debugger, the debugger of an integrated development environment, a
profiler, a code coverage testing tool, and the AWT robot.

We finish the book with input and output handling, In Java, all I/O is handled through so-called
streams. Streams let you deal in a uniform manner with communicating with any source of data,
such as files, network connections, or memory blocks. We include detailed coverage of the reader
and writer classes, which make it easy to deal with Unicode. We show you what goes on under
the hood when you use the object serialization mechanism, which makes saving and loading
objects easy and convenient. Finally, we cover several libraries that have been added to SDK 1.4:
the “new I/O” classes that contain support for advanced and more efficient file operations, and
the regular expression library.
An appendix lists the Java language keywords.

Conventions
As is common in many computer books, we use courier type to represent computer code.

"a J| There are many C++ notes that explain the difference between Java and C++. You can skip
ﬁ over them if you don’t have a background in C++ or if you consider your experience with that
language a bad dream of which you'd rather not be reminded.

E Notes and tips are tagged with “note” and “tip” icons that look like these.

Q9

X When there is danger ahead, we warn you with a “Caution” icon.

i==@r Java comes with a large programming library or Application Programming Interface (API). When

Hﬁ ¥ using an API call for the first time, we add a short summary description tagged with an APl icon
at the end of the section. These descriptions are a bit more informal, but we hope also a little

more informative than those in the official on-line APl documentation. We now tag each API note

with the version number in which the feature was introduced, to help the readers who don't use

the “bleeding edge” version of Java.

Programs whose source code is on the web are listed as examples, for instance
Example 2-4: WelcomeApplet.java.

Sample Code

The web site for this book at http: //www.phptr.com/corejava contains all sample code
from the book, in compressed form. You can expand the file either with one of the fam-
iliar unzipping programs or simply with the jar utility that is part of the Java Software
Development Kit. See Chapter 2 for more information about installing the Software
Development Kit and the sample code.

Ac:knowledg ments

Writing a book is always a monumental effort, and rewriting doesn’t seem to be much
easier, especially with continuous change in Java technology. Making a book a reality takes
many dedicated people, and it is my great pleasure to acknowledge the contributions of
the entire Core Java team.

A large number of individuals at Prentice-Hall PTR, Sun Microsystems Press, and Navta Inc.
provided valuable assistance, but they managed to stay behind the scenes. I'd like them all
to know how much I appreciate their efforts. As always, my warm thanks go to my editor,
Greg Doench of Prentice-Hall PTR, for steering the book through the writing and production
process, and for allowing me to be blissfully unaware of the existence of all those folks
behind the scenes. My thanks also to my co-author of earlier editions, Gary Cornell, who
has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors and
made lots of thoughtful suggestions for improvement. [am particularly grateful to the
excellent reviewing team that went over the manuscript with an amazing eye for detail
and saved me from many more embarrassing errors.

Reviewers this and earlier editions include Chuck Allison (Contributing Editor, C/C++

Users Journal), Alec Beaton (PointBase, Inc.), Joshua Bloch (Sun Microsystems), David Brown,
Dr. Nicholas]. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David Geary,
Angela Gordon (Sun Microsystems), Dan Gordon (Sun Microsystems), Rob Gordon,
Cameron Gregory (olabs.com), Marty Hall (The Johns Hopkins University Applied Physics
Lab), Vincent Hardy (Sun Microsystems), Vladimir Ivanovic (PointBase, Inc.), Jerry Jackson
(ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra, Charlie Lai (Sun
Microsystems), Doug Langston, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch,
Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida Atlantic
University), Paul Philion, Blake Ragsdell, Stuart Reges (University of Arizona), Peter Sander
(ESSI University, Nice, France), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),
Bradley A. Smith, Christopher Taylor, Luke Taylor (Valtech), George Thiruvathukal, Kim
Topley, Janet Traub, Peter van der Linden (Sun Microsystems), and Burt Walsh.

Cay Horstmann
San Francisco, 2002

Contents

Preface, xvii
To the Reader, xvii
About This Book, xvii
Conventions, xx
Sample Code. xx

Acknowledgments, xxi

Chapter 1

An Introduction to Java, 1
Java as a Programming Tool, 2
Advantages of Java, 2
The Java “White Paper” Buzzwords, 3
Simple, 4
Object Oriented, 4
Distributed, 5
Robust, 5
Secure, 5
Architecture Neutral, 6
Portable, 7
Interpreted, 7
High Performance, 7
Multithreaded, 8
Dynamic, 8
Java and the Intermnet, 8
A Short History of Java, 9
Common Misconceptions About Java, 11

Chapter 2

The Java Programming Environment, 15
Installing the Java Software Development Kit, 15

é Core Java

xz
Setting the Execution Path, 16
Installing the Library Source and Documentation, 17
Installing the Core Java Program Examples, 17
Navigating the Java Directories, 17

Development Environments, 18

Using the Command Line Tools, 19
Troubleshooting Hints, 20

Using an Integrated Development Environment, 21
Locating Compilation Errors, 22

Compiling and Running Programs from a Text Editor, 24

Graphical Applications, 27

Applets, 29

Chapter 3

Fundamental Programming Structures in Java, 35
A Simple Java Program, 35
Comments, 38
Data Types, 39
Integers, 39
Floating-Point Types, 40
The Character Type, 41
The boolean Type, 42
Variables, 42
Assignments and Initializations, 43
Constants, 43
Operators, 44
Increment and Decrement Operators, 45
Relational and boolean Operators, 45
Bitwise Operators, 46
Mathematical Functions and Constants, 47
Conversions Between Numeric Types, 47
Casts, 48
Parentheses and Operator Hierarchy, 49
Strings., 49
Concatenation, 50
Substrings, 50
String Editing, 50
Testing Strings for Equality, 52
Reading the On-line API Documentation, 53
Reading Input, 56
Formatting Output, 57
Control Flow, 60
Block Scope, 60
Conditional Statements, 61
Indeterminate Loops, 64
Determinate Loops, 68
Multiple Selections—the switch Statement, 70
Breaking Control Flow, 71
Big Numbers, 74
Arrays, 76

Contents é
=z

Array Initializers and Anonymous Arrays, 77

Copying Arrays, 77

Command Line Parameters, 79

Sorting an Array, 79

Multidimensional Arrays, 82
Ragged Arrays, 85

Chapter 4

Objects and Classes, 89
Introduction to Object-Oriented Programming, 89

The Vocabulary of OOP, 91
Objects, 91
Relationships Between Classes, 92
Contrasting OOP with Traditional Procedural Programming Techniques, 94
Using Existing Classes, 96
Objects and Object Variables, 96
The GregorianCalendar Class of the Java Library, 98
Building Your Own Classes, 104
An Employee Class, 104
Using Multiple Source Files, 107
Analyzing the Employee Class, 108
First Steps with Constructors, 108
The Methods of the Employee Class, 110
Method Access to Private Data, 113
Private Methods, 113
Final Instance Fields, 113
Static Fields and Methods, 114
Static Fields, 114
Constants, 114
Static Methods, 115
Factory Methods, 116
The main Method, 116
Method Parameters, 118
Object Construction, 124
Overloading, 124
Default Field Initialization, 124
Default Constructors, 125
Explicit Field Initialization, 125
Parameter Names, 126
Calling Another Constructor, 127
Initialization Blocks, 127
Object Destruction and the finalize Method, 131
Packages, 131
Using Packages, 132
Documentation Comments, 139
How to Insert Comments, 139
Class Comments, 139
Method Comments, 140
Field Comments, 140
General Comments, 141

