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To the Reader

In late 1995, the Java programming language burst onto the Internet scene and gained
instant celebrity status. The promise of Java technology was that it would become the
universal glue that connects users with information, whether that information comes from
Web servers, databases, information providers, or any other imaginable source. Indeed,
Java is in a unique position to fulfill this promise. It is an extremely solidly engineered
language that has gained acceptance by all major vendors, except for Microsoft. Its built-in
security and safety features are reassuring both to programmers and to the users of Java
programs. Java even has built-in support that makes advanced programming tasks, such as
network programming, database connectivity, and multithreading, straightforward.

Since 1995, Sun Microsystems has released five major revisions of the Java Software
Development Kit. Over the course of the last 7 years, the Application Programming
Interface (API) has grown from about 200 to just over 3,000 classes. The API now spans
such diverse areas as user interface construction, database management, international-
ization, security, and XML processing.

The book you have in your hand is the first volume of the sixth edition of the Core Java book.
With the publishing of each edition, the book followed the release of the Java Software Devel-
opment Kit as quickly as possible, and each time, we rewrote the book to take advantage of the
newest Java features.

As with the previous editions of this book, we still target serious programmers who want to put
Java to work on real projects. We still guarantee no nervous text or dancing tooth-shaped charac-
ters. We think of you, our reader, as a programmer with a solid background in a programming lan-
guage. But you do not need to know C++ or object-oriented programming. Based on the responses
we have received to the earlier editions of this book, we remain confident that experienced Visual
Basic, C, or COBOL programmers will have no trouble with this book. (You don’t even need any
experience in building graphical user interfaces for Windows, Unix, or the Macintosh.)

What we do is assume you want to:
e Write real code to solve real problems;

and

Xvii
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¢ Don'tlike books filled with toy examples (such as kitchen appliances or fruit trees).

In this book you will find lots of sample code that demonstrates almost every language and
library feature that we discuss. We kept the sample programs purposefully simple to focus
on the major points, but, for the most part, they aren’t fake and they don’t cut corners.
They should make good starting points for your own code.

We assume you are willing, even eager, to learn about all the advanced features that Java
puts at your disposal. For example, we give you a detailed treatment of:

Object-oriented programming

Reflection and proxies

Interfaces and inner classes

The event listener model

Graphical user interface design with the Swing Ul toolkit

Exception handling

Stream input/output and object serialization

We still don’t spend much time on the fun but less serious kind of Java programs whose
sole purpose is to liven up your Web page. There are quite a few sources for this kind

of material already—we recommend John Pew’s book Instant Java, also published by

Sun Microsystems Press.

Finally, with the explosive growth of the Java class library, a one-volume treatment of all
the features of Java that serious programmers need to know is no longer possible. Hence,
we decided to break the book up into two volumes. The first volume, which you hold in
your hands, concentrates on the fundamental concepts of the Java language, along with the
basics of user-interface programming. The second volume goes further into the enterprise
features and advanced user-interface programming. It includes detailed discussions of:

* Multithreading * Network programming
e Distributed objects * Collection classes

¢ Databases * Advanced graphics

¢ Advanced GUI components ¢ Internationalization

¢ Native methods e JavaBeans

¢ XML Processing

When writing a book, errors and inaccuracies are inevitable. We’d very much like to know
about them. But, of course, we’d prefer to learn about each of them only once. We have put
up a list of frequently asked questions, bugs fixes, and workarounds in a Web page at
http: //www.horstmann.com/corejava.html. Strategically placed at the end of the FAQ
(to encourage you to read through it first) is a form you can use to report bugs and suggest
improvements. Please don’t be disappointed if we don’t answer every query or if we don’t
get back to you immediately. We do read all e-mail and appreciate your input to make
future editions of this book clearer and more informative.

We hope that you find this book enjoyable and helpful in your Java programming.
About This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other pro-
gramming languages. We explain what the designers of the language set out to do and
to what extent they succeeded. Then, we give a short history of how Java came into
being and how it has evolved.

In Chapter 2, we tell you how to download and install the Java SDK from http: //java.sun.
com/j2se. We also describe how to download and install the Core Java program examples for
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this book from www . phptr . com/ corejava. Then we guide you through compiling and running
three typical Java programs, a console application, a graphical application, and an applet.
Chapter 3 starts the discussion of the Java language. In this chapter, we cover the basics: variables,
loops, and simple functions. If you are a C or C++ programmer, this is smooth sailing because
the syntax for these language features is essentially the same as in C. If you come from a non-C
background such as Visual Basic or COBOL, you will want to read this chapter carefully.
Object-oriented programming (OOP) is now in the mainstream of programming practice, and
Java is completely object-oriented. Chapter 4 introduces encapsulation, the first of two funda-
mental building blocks of object orientation, and the Java language mechanism to implement it,
that is, classes and methods. In addition to the rules of the Java language, we also give advice on
sound OOP design. Finally, we cover the marvelous javadoc tool that formats your code com-
ments as a set of hyperlinked web pages. If you are familiar with C++, then you can browse
through this chapter quickly. Programmers coming from a non-object-oriented background
should expect to spend some time mastering OOP concepts before going further with Java.
Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces the other,
namely, inheritance. Inheritance lets you take an existing class and modify it according to your
needs. This is a fundamental technique for programming in Java. The inheritance mechanism in
Java is quite similar to that in C++. Once again, C++ programmers can focus on the differences
between the languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you go beyond the
simple inheritance model of Chapter 5. Mastering interfaces allows you to have full access to
the power of Java’s completely object-oriented approach to programming. We also cover a
useful technical feature of Java called inner classes. Inner classes help make your code cleaner
and more concise.

In Chapter 7, we begin application programming in earnest. We show how you can make
windows, how to paint on them, how to draw with geometric shapes, how to format text in
multiple fonts, and how to display images.

Chapter 8 is a detailed discussion of the event model of the AWT, the abstract windows toolkit.
(We discuss the event model that was added to Java 1.1, not the obsolete and simplistic 1.0
event model.) You'll see how to write the code that responds to events like mouse clicks or key
presses. Along the way you'll see how to handle basic GUI elements like buttons and panels.

Chapter 9 discusses the Swing GUI toolkit in great detail. The Swing toolkit allows you to build
a cross-platform graphical user interface. You'll learn all about the various kinds of buttons, text
components, borders, sliders, list boxes, menus, and dialog boxes. However, some of the more
advanced components are discussed in Volume 2.

After you finish Chapter 9, you finally have all mechanisms in place to write applets, those mini-
programs that can live inside a Web page, and so applets are the topic of Chapter 10. We show
you a number of useful and fun applets, but more importantly, we look at applets as a method of
program deployment. We then describe how to package applications in JAR files, and how to
deliver applications over the internet with the Java Web Start mechanism. Finally, we explain how
Java programs can store and retrieve configuration information once they have been deployed.

Chapter 11 discusses exception handling, Java’s robust mechanism to deal with the fact that
bad things can happen to good programs. For example, a network connection can become
unavailable in the middle of a file download, a disk can fill up, and so on. Exceptions give
you an efficient way of separating the normal processing code from the error handling. Of
course, even after hardening your program by handling all exceptional conditions, it still
might fail to work as expected. In the second half of this chapter, we give you a large num-
ber of useful debugging tips. Finally, we guide you through sample sessions with various
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tools: the JDB debugger, the debugger of an integrated development environment, a
profiler, a code coverage testing tool, and the AWT robot.

We finish the book with input and output handling, In Java, all I/O is handled through so-called
streams. Streams let you deal in a uniform manner with communicating with any source of data,
such as files, network connections, or memory blocks. We include detailed coverage of the reader
and writer classes, which make it easy to deal with Unicode. We show you what goes on under
the hood when you use the object serialization mechanism, which makes saving and loading
objects easy and convenient. Finally, we cover several libraries that have been added to SDK 1.4:
the “new I/O” classes that contain support for advanced and more efficient file operations, and
the regular expression library.
An appendix lists the Java language keywords.

Conventions
As is common in many computer books, we use courier type to represent computer code.

"a J| There are many C++ notes that explain the difference between Java and C++. You can skip
ﬁ over them if you don’t have a background in C++ or if you consider your experience with that
language a bad dream of which you'd rather not be reminded.

E Notes and tips are tagged with “note” and “tip” icons that look like these.

Q9

X When there is danger ahead, we warn you with a “Caution” icon.

i==@r Java comes with a large programming library or Application Programming Interface (API). When

Hﬁ ¥ using an API call for the first time, we add a short summary description tagged with an APl icon
at the end of the section. These descriptions are a bit more informal, but we hope also a little

more informative than those in the official on-line APl documentation. We now tag each API note

with the version number in which the feature was introduced, to help the readers who don't use

the “bleeding edge” version of Java.

Programs whose source code is on the web are listed as examples, for instance
Example 2-4: WelcomeApplet.java.

Sample Code

The web site for this book at http: //www.phptr.com/corejava contains all sample code
from the book, in compressed form. You can expand the file either with one of the fam-
iliar unzipping programs or simply with the jar utility that is part of the Java Software
Development Kit. See Chapter 2 for more information about installing the Software
Development Kit and the sample code.



Ac:knowledg ments

Writing a book is always a monumental effort, and rewriting doesn’t seem to be much
easier, especially with continuous change in Java technology. Making a book a reality takes
many dedicated people, and it is my great pleasure to acknowledge the contributions of
the entire Core Java team.

A large number of individuals at Prentice-Hall PTR, Sun Microsystems Press, and Navta Inc.
provided valuable assistance, but they managed to stay behind the scenes. I'd like them all
to know how much I appreciate their efforts. As always, my warm thanks go to my editor,
Greg Doench of Prentice-Hall PTR, for steering the book through the writing and production
process, and for allowing me to be blissfully unaware of the existence of all those folks
behind the scenes. My thanks also to my co-author of earlier editions, Gary Cornell, who
has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors and
made lots of thoughtful suggestions for improvement. [ am particularly grateful to the
excellent reviewing team that went over the manuscript with an amazing eye for detail
and saved me from many more embarrassing errors.

Reviewers this and earlier editions include Chuck Allison (Contributing Editor, C/C++

Users Journal), Alec Beaton (PointBase, Inc.), Joshua Bloch (Sun Microsystems), David Brown,
Dr. Nicholas ]. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David Geary,
Angela Gordon (Sun Microsystems), Dan Gordon (Sun Microsystems), Rob Gordon,
Cameron Gregory (olabs.com), Marty Hall (The Johns Hopkins University Applied Physics
Lab), Vincent Hardy (Sun Microsystems), Vladimir Ivanovic (PointBase, Inc.), Jerry Jackson
(ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra, Charlie Lai (Sun
Microsystems), Doug Langston, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch,
Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida Atlantic
University), Paul Philion, Blake Ragsdell, Stuart Reges (University of Arizona), Peter Sander
(ESSI University, Nice, France), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),
Bradley A. Smith, Christopher Taylor, Luke Taylor (Valtech), George Thiruvathukal, Kim
Topley, Janet Traub, Peter van der Linden (Sun Microsystems), and Burt Walsh.

Cay Horstmann
San Francisco, 2002



Contents

Preface, xvii
To the Reader, xvii
About This Book, xvii
Conventions, xx
Sample Code. xx

Acknowledgments, xxi

Chapter 1

An Introduction to Java, 1
Java as a Programming Tool, 2
Advantages of Java, 2
The Java “White Paper” Buzzwords, 3
Simple, 4
Object Oriented, 4
Distributed, 5
Robust, 5
Secure, 5
Architecture Neutral, 6
Portable, 7
Interpreted, 7
High Performance, 7
Multithreaded, 8
Dynamic, 8
Java and the Intermnet, 8
A Short History of Java, 9
Common Misconceptions About Java, 11

Chapter 2

The Java Programming Environment, 15
Installing the Java Software Development Kit, 15



é Core Java

xz
Setting the Execution Path, 16
Installing the Library Source and Documentation, 17
Installing the Core Java Program Examples, 17
Navigating the Java Directories, 17

Development Environments, 18

Using the Command Line Tools, 19
Troubleshooting Hints, 20

Using an Integrated Development Environment, 21
Locating Compilation Errors, 22

Compiling and Running Programs from a Text Editor, 24

Graphical Applications, 27

Applets, 29

Chapter 3

Fundamental Programming Structures in Java, 35
A Simple Java Program, 35
Comments, 38
Data Types, 39
Integers, 39
Floating-Point Types, 40
The Character Type, 41
The boolean Type, 42
Variables, 42
Assignments and Initializations, 43
Constants, 43
Operators, 44
Increment and Decrement Operators, 45
Relational and boolean Operators, 45
Bitwise Operators, 46
Mathematical Functions and Constants, 47
Conversions Between Numeric Types, 47
Casts, 48
Parentheses and Operator Hierarchy, 49
Strings., 49
Concatenation, 50
Substrings, 50
String Editing, 50
Testing Strings for Equality, 52
Reading the On-line API Documentation, 53
Reading Input, 56
Formatting Output, 57
Control Flow, 60
Block Scope, 60
Conditional Statements, 61
Indeterminate Loops, 64
Determinate Loops, 68
Multiple Selections—the switch Statement, 70
Breaking Control Flow, 71
Big Numbers, 74
Arrays, 76




Contents é
=z

Array Initializers and Anonymous Arrays, 77

Copying Arrays, 77

Command Line Parameters, 79

Sorting an Array, 79

Multidimensional Arrays, 82
Ragged Arrays, 85

Chapter 4

Objects and Classes, 89
Introduction to Object-Oriented Programming, 89

The Vocabulary of OOP, 91
Objects, 91
Relationships Between Classes, 92
Contrasting OOP with Traditional Procedural Programming Techniques, 94
Using Existing Classes, 96
Objects and Object Variables, 96
The GregorianCalendar Class of the Java Library, 98
Building Your Own Classes, 104
An Employee Class, 104
Using Multiple Source Files, 107
Analyzing the Employee Class, 108
First Steps with Constructors, 108
The Methods of the Employee Class, 110
Method Access to Private Data, 113
Private Methods, 113
Final Instance Fields, 113
Static Fields and Methods, 114
Static Fields, 114
Constants, 114
Static Methods, 115
Factory Methods, 116
The main Method, 116
Method Parameters, 118
Object Construction, 124
Overloading, 124
Default Field Initialization, 124
Default Constructors, 125
Explicit Field Initialization, 125
Parameter Names, 126
Calling Another Constructor, 127
Initialization Blocks, 127
Object Destruction and the finalize Method, 131
Packages, 131
Using Packages, 132
Documentation Comments, 139
How to Insert Comments, 139
Class Comments, 139
Method Comments, 140
Field Comments, 140
General Comments, 141



