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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the matarial covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.
II. Complex analysis.
III. Measure theory, Lebesgue integratio:, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; and
Daniel Levine, who gave valuable help in proof-reading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein
Rami Shakarchi

Princeton, New Jersey
August 2002

In this third volume we establish the basic facts concerning measure
theory and integration. This allows us to reexamine and develop further
several important topics that arose in the previous volumes, as well as to
introduce a number of other subjects of substantial interest in analysis.
To aid the interested reader, we have starred sections that contain more
advanced material. These can be omitted on first reading. We also want
to take this opportunity to thank Daniel Levine for his continuing help in
proof-reading and the many suggestions he made that are incorporated
in the text.

November 2004



Introduction

I turn away in fright and horror from this lamentable
plague of functions that do not have derivatives.
C. Hermite, 1893

Starting in about 1870 a revolutionary change in the conceptual frame-
work of analysis began to take shape, one that ultimately led to a vast
transformation and generalization of the understanding of such basic ob-
jects as functions, and such notions as continuity, differentiability, and
integrability.

The earlier view that the relevant functions in analysis were given by
formulas or other “analytic” expressions, that these functions were by
their nature continuous (or nearly so). that by necessity such functions
had derivatives for most points, and moreover these were integrable by
the accepted methods of integration — all of these ideas began to give
way under the weight of various examples and problems that arose in
the subject, which could not be ignored and required new concepts to
be understood. Parallel with these developments came new insights that
were at once both more geometric and more abstract: a clearer under-
standing of the nature of curves, their rectifiability and their extent; also
the beginnings of the theory of sets, starting with subsets of the line, the
plane, etc., and the “measure” that could be assigned to each.

That is not to say that there was not considerable resistance to the
change of point-of-view that these advances required. Paradoxically,
some of the leading mathematicians of the time, those who should have
been best able to appreciate the new departures, were among the ones
who were most skeptical. That the new ideas ultimately won out can
be understood in terms of the many questions that could now be ad-
dressed. We shall describe here, somewhat imprecisely, several of the
most significant such problems.

Xv
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1 Fourier series: completion

Whenever f is a (Riemann) integrable function on [, 7] we deﬁned in
Book I its Fourier series f ~ Y a,e™® by

1 [ ;
(1) =3[ f@e e
and saw then that one had Parseval’s identity,
oo 1 .
> lonf =55 [ 1@ ds
n=--20

However, the above relationship between functions and their Fourier
coefficients is not completely reciprocal when limited to Riemann inte-
grable functions. Thus if we consider the space R of such functions with
its square norm, and the space ¢2(Z) with its norm,! each element f in
R assigns a corresponding element {a,} in £2(Z), and the two norms are
identical. However, it is easy to construct elements in ¢2(Z) that do not
correspond to functions in R. Note also that the space ¢2(Z) is complete
in its norm, while R is not.2 Thus we are led to two questions:

(i) What are the putative “functions” f that arise when we complete
R? In other words: given an arbitrary sequence {a,} € £2(Z) what
is the nature of the (presumed) function f corresponding to these
coefficients?

(ii) How do we integrate such functions f (and in particular verify (1))?

2 Limits of continuous functions

Suppose {f»} is a sequence of continuous functions on [0, 1]. We assume
that lim, . fn(z) = f(z) exists for every z, and inquire as to the nature
of the limiting function f.

If we suppose that the convergence is uniform, matters are straight-
forward and f is then everywhere continuous. However, once we drop
the assumption of uniform convergence, things may change radically and
the issues that arise can be quite subtle. An example of this is given by
the fact that one can construct a sequence of continuous functions {fn}
converging everywhere to f so that

1We use the notation of Chapter 3 in Book I.
2See the discussion surrounding Theorem 1.1 in Section 1, Chapter 3 of Book I.
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(a) 0 < fa(z) <1 for all z.
(b) The sequence f,(z) is montonically decreasing as n — oo.

(c) The limiting function f is not Riemann integrable.?

However, in view of (a) and (b), the sequence fol fn(x) dz converges to
a limit. So it is natural to ask: what method of integration can be used
to integrate f and obtain that for it

1 1
/ f(z)dz = lim fa(z)dz?
0 n—oc Jo

It is- with Lebesgue integration that we can solve both this problem
and the previous one.

3 Length of curves

The study of curves in the plane and the calculation of their lengths
are among the first issues dealt with when one learns calculus. Suppose
we consider a continuous curve I' in the plane, given parametrically by
I = {(z(¢),y(t))}, a < t < b, with z and y continuous functions of t. We
define the length of ' in the usual way: as the supremum of the lengths
of all polygonal lines joining successively finitely many points of I, taken
in order of increasing t. We say that I' is rectifiable if its length L is
finite. When z(t) and y(t) are continuously differentiable we have the
well-known formula,

b
@) Le / (@) + (@ (©)?)" de.

The problems we are led to arise when we consider genergl curves.
More specifically, we can ask:

(i) What are the conditions on the functions z(t) and y(¢) that guar-
antee the rectifiability of I'?

(ii) When these are satisfied, does the formula (2) hold?

The first question has a complete answer in terms of the notion of func-
tions of “bounded variation.” As to the second, it turns out that if z and
y are of bounded variation, the integral (2) is always meaningful; how-
ever, the equality fails in general, but can be restored under appropriate
reparametrization of the curve T

3The limit f can be highly discontinuous. See, for instance, Exercise 10 in Chapter 1.
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There are further issues that arise. Rectifiable curves, because they
are endowed with length, are genuinely one-dimensional in nature. Are
there (non-rectifiable) curves that are two-dimensional? We shall see
that, indeed, there are continuous curves in the plane that fill a square,
or more generally have any dimension between 1 and 2, if the notion of
fractional dimension is appropriately defined.

4 Differentiation and integration

The so-called “fundamental theorem of the calculus” expresses the fact
that differentiation and integration are inverse operations, and this can
be stated in two different ways, which we abbreviate as follows:

b
3 F(t) ~ F(a) = / F'(z) dz,

(4 = [ fod=16).

For the first assertion, the existence of continuous functions F that are
nowhere differentiable, or for which F’(z) exists for every z, but F’ is
not integrable, leads to the problem of finding a general class of the F' for
which (3) is valid. As for (4), the question is to formulate properly and
establish this assertion for the general class of integrable functions f that
arise in the solution of the first two problems considered above. These
questions can be answered with the help of certain “covering” arguments,
and the notion of absolute continuity.

5 The problem of measure

To put matters clearly, the fundamental issue that must be understood
in order to try to answer all the questions raised above is the problem
of measure. Stated (imprecisely) in its version in two dimensions, it
is the problem of assigning to each subset E of R? its two-dimensional
measure ma(E), that is, its “area,” extending the standard notion defined
fcr cicmentary <ets. Let us instead state more precisely the analogous
problem in one dimension, that of constructing one-dimensional measure
m; = m, which generalizes the notion of length in R.

We are looking for a non-negative function m defined on the family of
subsets F of R that we allow to be extended-valued, that is, to take on
the value +oc. We require:
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(a) m(E) = b — aif E is the interval [a,b], a < b, of length b — a.
(b) m(E) =Y">", m(E,) whenever E = J-, E, and the sets E, are
disjoint.
Condition (b) is the “countable additivity” of the measure m. It implies
the special case:
(b") m(E1 U E3) = m(Ey) + m(Ez) if Ey and E, are disjoint.
However, to apply the many limiting arguments that arise in the theory
the general case (b) is indispensable, and (b’) by itself would definitely
be inadequate.

To the axioms (a) and (b) one adds the translation-invariance of m,
namely

(¢) m(E + h) = m(E), for every h € R.

A basic result of the theory is the existence (and uniqueness) of such
a measure, Lebesgue measure, when one limits oneself to a class of rea-
sonable sets, those which are “measurable.” This class of sets is closed
under countable unions, intersections, and complements, and contains
the open sets, the closed sets, and so forth.4

It is with the construction of this measure that we begin our study.
From it will flow the general theory of integration, and in particular the
solutions of the problems discussed above.

A chronology
We conclude this introduction by listing some of the signal events that
marked the early development of the subject.

1872 — Weierstrass's construction of a nowhere differentiable function.

1881 — Introduction of functions of bounded variation by Jordan and
later (1887) connection with rectifiability.

1883 — Cantor’s ternary set.

1890 — Construction of a space-filling curve by Peano.
1898 — Borel's measurable sets.

1902 — Lebesgue’s theory of measure and integration.
1905 — Construction of non-measurable sets by Vitali.

1906 — Fatou's application of Lebesgue theory to complex analysis.

4There is no such measure on the class of all subsets, since there exist non-measurabie
sets. See the construction of such a set at the end of Section 3, Chapter 1.
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