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Preface

This Fourth Edition of Schaum’s Outline of Theory and Problems of Strength

of Materials adheres to the basic plan of the third edition but has several distinctive
features.

1.

Problem solutions are given in both SI (metric) and USCS units.

About fourteen computer programs are offered in either FORTRAN or
BASIC for those types of problems that otherwise involve long, tedious
computation. For example, beam stresses and deflections are readily deter-
mined by the programs given. All of these programs may be utilized on most
PC systems with only modest changes in input format.

The presentation passes from elementary to more complex cases for a variety
of structural elements subject to practical conditions of loading and support.
Generalized treatments, such as elastic energy approaches, as well as plastic
analysis and design are treated in detail.

The author is much indebted to Kathleen Derwin for preparation of most of

the computer programs as well as careful checking of some of the new problems.

WiLLIAM A. NASH
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Chapter 1

Tension and Compression

INTERNAL EFFECTS OF FORCES

In this book we shall be concerned with what might be called the internal effects of forces acting
on a body. The bodies themselves will no longer be considered to be perfectly rigid as was assumed
in statics; instead, the calculation of the deformations of various bodies under a variety of loads will
be one of our primary concerns in the study of strength of materials.

Axially Loaded Bar

The simplest case to consider at the start is that of an initially straight metal bar of constant cross
section, loaded at its ends by a pair of oppositely directed collinear forces coinciding with the
longitudinal axis of the bar and acting through the centroid of each cross section. For static equilibrium
the magnitudes of the forces must be equal. If the forces are directed away from the bar, the bar is said
to be in tension,; if they are directed toward the bar, a state of compression exists. These two conditions
are illustrated in Fig. 1-1.

Under the action of this pair of applied forces, internal resisting forces are set up within the bar
and their characteristics may be studied by imagining a plane to be passed through the bar anywhere
along its length and oriented perpendicular to the longitudinal axis of the bar. Such a plane is
designated as a-a in Fig. 1-2(a). If for purposes of analysis the portion of the bar to the right of this
plane is considered to be removed, as in Fig. 1-2(b), then it must be replaced by whatever effect it exerts
upon the left portion. By this technique of introducing a cutting plane, the originally internal forces
now become external with respect to the remaining portion of the body. For equilibrium of the portion
to the left this “effect” must be a horizontal force of magnitude P. However, this force P acting normal
to the cross-section a-a is actually the resultant of distributed forces acting over this cross section in
a direction normal to it.

At this point it is necessary to make some assumption regarding the manner of variation of these
distributed forces, and since the applied force P acts through the centroid it is commonly assumed that
they are uniform across the cross section.

- r—{ B -

Bar in tension (@)

—
i L 1=
Bar in compression (b)
Fig. 1-1 Fig. 1-2

Normal Stress

Instead of speaking of the internal force acting on some small element of area, it is better for
comparative purposes to treat the normal force acting over a unit area of the cross section. The
intensity of normal force per unit area is termed the normal stress and is expressed in units of force
per unit area, e.g., Ib/in® or N/m?. If the forces applied to the ends of the bar are such that the bar is

1



2 TENSION AND COMPRESSION [CHAP. 1

in tension, then tensile stresses are set up in the bar; if the bar is in compression we have compressive
stresses. It is essential that the line of action of the applied end forces pass through the centroid of each
cross section of the bar.

Test Specimens

The axial loading shown in Fig. 1-2(a) occurs frequently in structural and machine design problems.
To simulate this loading in the laboratory, a test specimen is held in the grips of either an electrically
driven gear-type testing machine or a hydraulic machine. Both of these machines are commonly used
in materials testing laboratories for applying axial tension.

In an effort to standardize materials testing techniques the American Society for Testing Materials
(ASTM) has issued specifications that are in common use. Only two of these will be mentioned here,
one for metal plates thicker than i in (4.76 mm) and appearing as in Fig. 1-3, the other for metals over
1.5in (38 mm) thick and having the appearance shown in Fig. 1-4. As may be seen from these figures,
the central portion of the specimen is somewhat smaller than the end regions so that failure will not
take place in the gripped portion. The rounded fillets shown are provided so that no stress
concentrations will arise at the transition between the two lateral dimensions. The standard gage length
over which elongations are measured is 8in (203 mm) for the specimen shown in Fig. 1-3 and 2in
(57 mm) for that shown in Fig. 1-4.

The elongations are measured by either mechanical or optical extensometers or by cementing an
electric resistance-type strain gage to the surface of the material. This resistance strain gage consists
of a number of very fine wires oriented in the axial direction of the bar. As the bar elongates, the
electrical resistance of the wires changes and this change of resistance is detected on a Wheatstone
bridge and interpreted as elongation.

8" ——]

= 9"
~—203mm—-—4 ts\:-nm:j
F a0 &

Fig. 1-3 Fig. 1-4

Normal Strain

Let us suppose that one of these tension specimens has been placed in a tension-compression
testing machine and tensile forces gradually applied to the ends. The elongation over the gage length
may be measured as indicated above for any predetermined increments of the axial load. From these
values the elongation per unit length, which is termed normal strain and denoted by €, may be found
by dividing the total elongation A by the gage length L, that is, e = A/L. The strain is usually expressed
in units of inches per inch or meters per meter and consequently is dimensionless.

Stress-Strain Curve

As the axial load is gradually increased in increments, the total elongation over the gage length
is measured at each increment of load and this is continued until fracture of the specimen takes place.
Knowing the original cross-sectional area of the test specimen the normal stress, denoted by o, may
be obtained for any value of the axial load by the use of the relation

P

O'=Z
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o
o (-4
Y
/
P //
/ €
O -—Cl—‘ 0’
P
Fig. 1-8
(
€ €
o o .
(0]
Fig. 1-§ Fig. 1-6 Fig. 1-7 Fig. 1-9

where P denotes the axial load in pounds or Newtons and A the original cross-sectional area. Having
obtained numerous pairs of values of normal stress o and normal strain ¢, the experimental data may
be plotted with these quantities considered as ordinate and abscissa, respectively. This is the
stress-strain curve or diagram of the material for this type of loading. Stress-strain diagrams assume
widely differing forms for various materials. Figure 1-5 is the stress-strain diagram for a medium-carbon
structural steel, Fig. 1-6 is for an alloy steel, and Fig. 1-7 is for hard steels and certain nonferrous alloys.
For nonferrous alloys and cast iron the diagram has the form indicated in Fig. 1-8, while for rubber the
plot of Fig. 1-9 is typical.

Ductile and Brittle Materials

Metallic engineering materials are commonly classed as either ductile or brittle materials. A ductile
material is one having a relatively large tensile strain up to the point of rupture (for example, structural
steel or aluminum) whereas a brittle material has a relatively small strain up to this same point. An
arbitrary strain of 0.05 in/in (or mm/mm) is frequently taken as the dividing line between these two
classes of materials. Cast iron and concrete are examples of brittle materials.

Hooke’s Law

For any material having a stress-strain curve of the form shown in Fig. 1-5, 1-6, or 1-7, it is evident
that the relation between stress and strain is linear for comparatively small values of the strain. This
linear relation between elongation and the axial force causing it (since these quantities respectively
differ from the strain or the stress only by a constant factor) was first noticed by Sir Robert Hooke in
1678 and is called Hooke’s law. To describe this initial linear range of action of the material we may
consequently write

o= Ee

where E denotes the slope of the straight-line portion OP of each of the curves in Figs. 1-5, 1-6,
and 1-7.



4 TENSION AND COMPRESSION [CHAP. 1

Modulus of Elasticity

The quantity E, i.e., the ratio of the unit stress to the unit strain, is the modulus of elasticity of the
material in tension, or, as it is often called, Young’s modulus.* Values of E for various engineering
materials are tabulated in handbooks. A table for common materials appears at the end of this chapter.
Since the unit strain € is a pure number (being a ratio of two lengths) it is evident that E has the same
units as does the stress, for example Ib/in?, or N/m? For many common engineering materials the
modulus of elasticity in compression is very nearly equal to that found in tension. It is to be carefully
noted that the behavior of materials under load as discussed in this book is restricted (unless otherwise
stated) to the linear region of the stress-strain curve.

MECHANICAL PROPERTIES OF MATERIALS

The stress-strain curve shown in Fig. 1-5 may be used to characterize several strength characteris-
tics of the material. They are:

Proportional Limit

The ordinate of the point P is known as the proportional limit, i.e., the maximum stress that may
be developed during a simple tension test such that the stress is a linear function of strain. For a
material having the stress-strain curve shown in Fig. 1-8 there is no proportional limit.

Elastic Limit

The ordinate of a point almost coincident with P is known as the elastic limit, i.e., the maximum
stress that may be developed during a simple tension test such that there is no permanent or residual
deformation when the load is entirely removed. For many materials the numerical values of the elastic
limit and the proportional limit are almost identical and the terms are sometimes used synonymously.
In those cases where the distinction between the two values is evident the elastic limit is almost always
greater than the proportional limit.

Elastic and Plastic Ranges

That region of the stress-strain curve extending from the origin to the proportional limit is called
the elastic range; that region of the stress-strain curve extending from the proportional limit to the point
of rupture is called the plastic range.

Yield Point

The ordinate of the point Y in Fig. 1-5, denoted by o,,, at which there is an increase in strain with
no increase in stress is known as the yield point of the material. After loading has progressed to the
point Y, yielding is said to take place. Some materials exhibit two points on the stress-strain curve at
which there is an increase of strain without an increase of stress. These are called upper and lower yield
points.

*Thomas Young was an English physicist, born in 1773, who worked in a number of areas such as mechanics, light, and heat.
Before Young, historians had been unable to decipher stone tablets cut or painted in the characters (hieroglyphics) employed
by Egyptians several thousand years B.c. Young, a master of eleven languages, was the first to successfully decipher any of the
characters based upon study of the famous Rosetta stone found in 1799. His work, followed by that of Champollion in France,
led to complete decipherment of the ancient language.
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Ultimate Strength or Tensile Strength

The ordinate of the point U in Fig. 1-5, the maximum ordinate to the curve, is known either as the
ultimate strength or the tensile strength of the material.

Breaking Strength

The ordinate of the point B in Fig. 1-5 is called the breaking strength of the material.

Modulus of Resilience

The work done on a unit volume of material, as a simple tensile force is gradually increased from
zero to such a value that the proportional limit of the material is reached, is defined as the modulus
of resilience. This may be calculated as the area under the stress-strain curve from the origin up to the
proportional limit and is represented as the shaded area in Fig. 1-5. The units of this quantity are
in-1b/in®, or N-m/m? in the SI system. Thus, resilience of a material is its ability to absorb energy in
the elastic range.

Modulus of Toughness

The work done on a unit volume of material as a simple tensile force is gradually increased from
zero to the value causing rupture is defined as the modulus of toughness. This may be calculated as the
entire area under the stress-strain curve from the origin to rupture. Toughness of a material is its ability
to absorb energy in the plastic range of the material.

Percentage Reduction in Area

The decrease in cross-sectional area from the original area upon fracture divided by the original
area and multiplied by 100 is termed percentage reduction in area. It is to be noted that when tensile
forces act upon a bar, the cross-sectional area decreases, but calculations for the normal stress are
usually made upon the basis of the original area. This is the case for the curve shown in Fig. 1-5. As
the strains become increasingly larger it is more important to consider the instantaneous values of the
cross-sectional area (which are decreasing), and if this is done the true stess-strain curve is obtained.
Such a curve has the appearance shown by the dashed line in Fig. 1-5.

Percentage Elongation

The increase in length (of the gage length) after fracture divided by the initial length and multiplied
by 100 is the percentage elongation. Both the percentage reduction in area and the percentage
elongation are considered to be measures of the ductility of a material.

Working Stress

The above-mentioned strength characteristics may be used to select a working stress. Frequently
such a stress is determined merely by dividing either the stress at yield or the ultimate stress by a
number termed the safety factor. Selection of the safety factor is based upon the designer’s judgment
and experience. Specific safety factors are sometimes specified in design codes.

Strain Hardening

If a ductile material can be stressed considerably beyond the yield point without failure, it is said
to strain-harden. This is true of many structural metals.
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The nonlinear stress-strain curve of a brittle material, shown in Fig. 1-8, characterizes several other
strength measures that cannot be introduced if the stress-strain curve has a linear region. They are:

Yield Strength

The ordinate to the stress-strain curve such that the material has a predetermined permanent
deformation or “set” when the load is removed is called the yield strength of the material. The
permanent set is often taken to be either 0.002 or 0.0035 in per in or mm per mm. These values are
of course arbitrary. In Fig. 1-8 a set ¢, is denoted on the strain axis and the line O'Y is drawn parallel
to the initial tangent to the curve. The ordinate of Y represents the yield strength of the material,
sometimes called the proof stress.

Tangent Modulus

The rate of change of stress with respect to strain is known as the tangent modulus of the material.
It is essentially an instantaneous modulus given by E, = do/de.

Coefficient of Linear Expansion

This is defined as the change of length per unit length of a straight bar subject to a temperature
change of one degree and is usually denoted by a. The value of this coefficient is independent of the
unit of length but does depend upon the temperature scale used. For example, from Table 1-1 at the
end of this chapter the coefficient for steel is 6.5 X 10~%°F but 12 X 107%/°C. Temperature changes in
a structure give rise to internal stresses, just as do applied loads.

Poisson’s Ratio

When a bar is subject to a simple tensile loading there is an increase in length of the bar in the
direction of the load, but a decrease in the lateral dimensions perpendicular to the load. The ratio of
the strain in the lateral direction to that in the axial direction is defined as Poisson’s ratio. It is denoted
in this book by the Greek letter u. For most metals it lies in the range 0.25 to 0.35. For cork, u is very
nearly zero. One new and unique material, so far of interest only in laboratory investigations, actually
has a negative value of Poisson’s ratio; i.e., if stretched in one direction it expands in every other
direction. See Problems 1.19 through 1.24.

General Form of Hooke’s Law

The simple form of Hooke’s law has been given for axial tension when the loading is entirely along
one straight line, i.e., uniaxial. Only the deformation in the direction of the load was considered and
it was given by

e = —
E
In the more general case an element of material is subject to three mutually perpendicular normal
stresses o, 0y, 0,, which are accompanied by the strains e, €,, €;, respectively. By superposing the strain
components arising from latéral contraction due to Poisson’s effect upon the direct strains we obtain
the general statement of Hooke’s law:
[0’2 - M(O'z + Uy)]

(ST h— [0’, - [,L(O'y + Vz)] € = [a'y - ;.L(O', + Uz)] €, =

E
See Problems 1.20 and 1.23.

| =



CHAP. 1] TENSION AND COMPRESSION 7

Specific Strength

This quantity is defined as the ratio of the ultimate (or tensile) strength to specific weight, i.e.,
weight per unit volume. Thus, in the USCS system, we have

b /b
in?/ i "

and, in the SI system, we have

so that in either system specific strength has units of length. This parameter is useful for comparisons
of material efficiencies. See Problem 1.25.

Specific Modulus

This quantity is defined as the ratio of the Young’s modulus to specific weight. Substitution of units

indicates that specific modulus has physical units of length in either the USCS or SI systems. See
Problem 1.25.

DYNAMIC EFFECTS

In determination of mechanical properties of a material through a tension or compression test, the
rate at which loading is applied sometimes has a significant influence upon the results. In general,
ductile materials exhibit the greatest sensitivity to variations in loading rate, whereas the effect of
testing speed on brittle materials, such as cast iron, has been found to be negligible. In the case of mild
steel, a ductile material, it has been found that the yield point may be increased as much as 170 percent
by extremely rapid application of axial force. It is of interest to note, however, that for this case the
total elongation remains unchanged from that found for slower loadings.

CLASSIFICATION OF MATERIALS

Up to now, this entire discussion has been based upon the assumptions that two characteristics
prevail in the material. They are that we have

A homogeneous material, one with the same elastic properties (E, u) at all points in the body

An isotropic material, one having the same elastic properties in all directions at any one point of
the body.

Not all materials are isotropic. If a material does not possess any kind of elastic symmetry it is
called anisotropic, or sometimes aeolotropic. Instead of having two independent elastic constants (E, w)
as an isotropic material does, such a substance has 21 elastic constants. If the material has three
mutually perpendicular planes of elastic symmetry it is said to be orthotropic. The number of
independent constants is nine in this case. Modern filamentary reinforced composite materials, such as
shown in Fig. 1-10, are excellent examples of anisotropic substances.
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Fig. 1-10 (a) Epoxy bar reinforced by fine filaments in one direction; (b) epoxy plate reinforced by fine filaments
in two directions.

ELASTIC VERSUS PLASTIC ANALYSIS

Stresses and deformations in the plastic range of action of a material are frequently permitted in
certain structures. Some building codes allow particular structural members to undergo plastic
deformation, and certain components of aircraft and missile structures are deliberately designed to act
in the plastic range so as to achieve weight savings. Furthermore, many metal-forming processes
involve plastic action of the material. For small plastic strains of low- and medium-carbon structural
steels the stress-strain curve of Fig. 1-11 is usually idealized by two straight lines, one with a slope of
E, representing the elastic range, the other with zero slope representing the plastic range. This plot,
shown in Fig. 1-11, represents a so-called elastic, perfectly plastic material. It takes no account of still
larger plastic strains occurring in the strain-hardening region shown as the right portion of the
stress-strain curve of Fig. 1-5. See Problem 1.26.
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