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Preface

Algebra is used by virtually all mathematicians, be they analysts, combinatorists, computer
scientists, geometers, logicians, number theorists, or topologists. Nowadays, everyone
agrees that some knowledge of linear algebra, groups, and commutative rings is necessary,
and these topics are introduced in undergraduate courses. We continue their study.

This book can be used as a text for the first year of graduate algebra, but it is much more
than that. It can also serve more advanced graduate students wishing to learn topics on
their own; while not reaching the frontiers, the book does provide a sense of the successes
and methods arising in an area. Finally, this is a reference containing many of the standard
theorems and definitions that users of algebra need to know. Thus, the book is not only an
appetizer, but a hearty meal as well.

Let me now address readers and instructors who use the book as a text for a beginning
graduate course. If I could assume that everyone had already read my book, A First Course
in Abstract Algebra, then the prerequisites for this book would be plain. But this is not a
realistic assumption; different undergraduate courses introducing abstract algebra abound,
as do texts for these courses. For many, linear algebra concentrates on matrices and vector
spaces over the real numbers, with an emphasis on computing solutions of linear systems
of equations; other courses may treat vector spaces over arbitrary fields, as well as Jordan
and rational canonical forms. Some courses discuss the Sylow theorems; some do not;
some courses classify finite fields; some do not.

To accommodate readers having different backgrounds, the first three chapters contain
many familiar results, with many proofs merely sketched. The first chapter contains the
fundamental theorem of arithmetic, congruences, De Moivre’s theorem, roots of unity,
cyclotomic polynomials, and some standard notions of set theory, such as equivalence
relations and verification of the group axioms for symmetric groups. The next two chap-
ters contain both familiar and unfamiliar material. “New” results, that is, results rarely
taught in a first course, have complete proofs, while proofs of “old” results are usually
sketched. In more detail, Chapter 2 is an introduction to group theory, reviewing permuta-
tions, Lagrange’s theorem, quotient groups, the isomorphism theorems, and groups acting
on sets. Chapter 3 is an introduction to commutative rings, reviewing domains, fraction
fields, polynomial rings in one variable, quotient rings, isomorphism theorems, irreducible
polynomials, finite fields, and some linear algebra over arbitrary fields. Readers may use
“older” portions of these chapters to refresh their memory of this material (and also to
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X Preface

see my notational choices); on the other hand, these chapters can also serve as a guide for
learning what may have been omitted from an earlier course (complete proofs can be found
in A First Course in Abstract Algebra). This format gives more freedom to an instructor,
for there is a variety of choices for the starting point of a course of lectures, depending
on what best fits the backgrounds of the students in a class. I expect that most instruc-
tors would begin a course somewhere in the middle of Chapter 2 and, afterwards, would
continue from some point in the middle of Chapter 3. Finally, this format is convenient
for the author, because it allows me to refer back to these earlier results in the midst of a
discussion or a proof. Proofs in subsequent chapters are complete and are not sketched.

I have tried to write clear and complete proofs, omitting only those parts that are truly
routine; thus, it is not necessary for an instructor to expound every detail in lectures, for
students should be able to read the text.

When I was a student, Birkhoff and Mac Lane’s A Survey of Modern Algebra was the
text for my first algebra course, and van der Waerden’s Modern Algebra was the text for
my second course. Both are excellent books (I have called this book Advanced Modern
Algebra in homage to them), but times have changed since their first appearance: Birkhoff
and Mac Lane’s book first appeared in 1941, and van der Waerden'’s book first appeared
in 1930. There are today major directions that either did not exist over 60 years ago, or
that were not then recognized to be so important. These new directions involve algebraic
geometry, computers, homology, and representations (A Survey of Modern Algebra has
been rewritten as Mac Lane-Birkhoff, Algebra, Macmillan, New York, 1967, and this
version introduces categorical methods; category theory emerged from algebraic topology,
but was then used by Grothendieck to revolutionize algebraic geometry).

Here is a more detailed account of the later chapters of this book.

Chapter 4 discusses fields, beginning with an introduction to Galois theory, the inter-
relationship between rings and groups. We prove the insolvability of the general polyno-
mial of degree 5, the fundamental theorem of Galois theory, and applications, such as a
proof of the fundamental theorem of algebra, and Galois’s theorem that a polynomial over
a field of characteristic 0 is solvable by radicals if and only if its Galois group is a solvable
group.

Chapter 5 covers finite abelian groups (basis theorem and fundamental theorem), the
Sylow theorems, Jordan—Holder theorem, solvable groups, simplicity of the linear groups
PSL(2, k), free groups, presentations, and the Neilsen—Schreier theorem (subgroups of free
groups are free).

Chapter 6 introduces prime and maximal ideals in commutative rings; Gauss’s theorem
that R[x] is a UFD when R is a UFD; Hilbert’s basis theorem, applications of Zorn’s lemma
to commutative algebra (a proof of the equivalence of Zorn’s lemma and the axiom of
choice is in the appendix), inseparability, transcendence bases, Liiroth’s theorem, affine va-
rieties, including a proof of the Nullstellensatz for uncountable algebraically closed fields
(the full Nullstellensatz, for varieties over arbitrary algebraically closed fields, is proved
in Chapter 11); primary decomposition; Grobner bases. Chapters 5 and 6 overlap two
chapters of A First Course in Abstract Algebra, but these chapters are not covered in most
undergraduate courses.
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Chapter 7 introduces modules over commutative rings (essentially proving that all
R-modules and R-maps form an abelian category); categories and functors, including
products and coproducts, pullbacks and pushouts, Grothendieck groups, inverse and direct
limits, natural transformations; adjoint functors; free modules, projectives, and injectives.

Chapter 8 introduces noncommutative rings, proving Wedderburn’s theorem that finite
division rings are commutative, as well as the Wedderburn—Artin theorem classifying semi-
simple rings. Modules over noncommutative rings are discussed, along with tensor prod-
ucts, flat modules, and bilinear forms. We also introduce character theory, using it to prove
Burnside’s theorem that finite groups of order p™g" are solvable. We then introduce multi-
ply transitive groups and Frobenius groups, and we prove that Frobenius kernels are normal
subgroups of Frobenius groups.

Chapter 9 considers finitely generated modules over PIDs (generalizing earlier theorems
about finite abelian groups), and then goes on to apply these results to rational, Jordan, and
Smith canonical forms for matrices over a field (the Smith normal form enables one to
compute elementary divisors of a matrix). We also classify projective, injective, and flat
modules over PIDs. A discussion of graded k-algebras, for k a commutative ring, leads to
tensor algebras, central simple algebras and the Brauer group, exterior algebra (including
Grassman algebras and the binomial theorem), determinants, differential forms, and an
introduction to Lie algebra.

Chapter 10 introduces homological methods, beginning with semidirect products and
the extension problem for groups. We then present Schreier’s solution of the extension
problem using factor sets, culminating in the Schur—Zassenhaus lemma. This is followed
by axioms characterizing Tor and Ext (existence of these functors is proved with derived
functors), some cohomology of groups, a bit of crossed product algebras, and an introduc-
tion to spectral sequences.

Chapter 11 returns to commutative rings, discussing localization, integral extensions,
the general Nullstellensatz (using Jacobson rings), Dedekind rings, homological dimen-
sions, the theorem of Serre characterizing regular local rings as those noetherian local
rings of finite global dimension, the theorem of Auslander and Buchsbaum that regular
local rings are UFDs.

Each generation should survey algebra to make it serve the present time.

It is a pleasure to thank the following mathematicians whose suggestions have greatly
improved my original manuscript: Michael Barr, Daniel Bump, Heng Huat Chan, Ulrich
Daepp, Boris A. Datskovsky, Keith Dennis, Vlastimil Dlab, Sankar Dutta, David Eisen-
bud, E. Graham Evans, Jr., Daniel Flath, Jeremy J. Gray, Daniel Grayson, Philllip Grif-
fith, William Haboush, Robin Hartshorne, Craig Huneke, Gerald J. Janusz, Carl Jockusch,
David Leep, Marcin Mazur, Leon McCulloh, Emma Previato, Eric Sommers, Stephen V.
Ullom, Paul Vojta, William C. Waterhouse, and Richard Weiss.

Joseph Rotman



Etymology

The heading etymology in the index points the reader to derivations of certain mathematical
terms. For the origins of other mathematical terms, we refer the reader to my books Journey
into Mathematics and A First Course in Abstract Algebra, which contain etymologies of
the following terms.

-~

Journey into Mathematics:

7, algebra, algorithm, arithmetic, completing the square, cosine, geometry, irrational
number, isoperimetric, mathematics, perimeter, polar decomposition, root, scalar, secant,
sine, tangent, trigonometry.

A First Course in Abstract Algebra:

affine, binomial, coefficient, coordinates, corollary, degree, factor, factorial, group,
induction, Latin square, lemma, matrix, modulo, orthogonal, polynomial, quasicyclic,
September, stochastic, theorem, translation.
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Special Notation

A algebraic numbers
A, alternating group on n letters
Ab category of abelian groups
Aff(1, k) one-dimensional affine group over a field &
Aut(G) automorphism group of a group G
Br(k), Br(E/k) Brauer group, relative Brauer group
C complex numbers
C,, (C,,d,) complex with differentiations d, : C, = Cp—1
Cg(x) centralizer of an element x in a group G
D(R) global dimension of a commutative ring R
D,, dihedral group of order 2n
deg(f) degree of a polynomial f(x)
Deg(f) multidegree of a polynomial f(xy, ..., xp)
det(A) determinant of a matrix A
dimy (V) dimension of a vector space V over a field &
dim(R) Krull dimension
Endy (M) endomorphism ring of a k-module M
F, finite field having g elements
Frac(R) fraction field of a domain R
Gal(E/k) Galois group of a field extension E /k
GL(V) automorphisms of a vector space V
GL(n, k) n x n nonsingular matrices, entries in a field k
H division ring of real quaternions
H,, H" homology, cohomology
ht(p) height of prime ideal
I,, integers modulo m
I or I, identity matrix
VT radical of an ideal I
Id(A) ideal of a subset A C k"
im f image of a function f
irr(o, k) minimal polynomial of o over a field k
k algebraic closure of a field k

Xiil
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Ko(R), Ko(C)
K'(C)
ker f

ID(R)
Mat, (k)
rMod
Modg

N

Ng(H)
Ok

O(x)
PSL(n, k)

Special Notation

Grothendieck groups, direct sums

Grothendieck group, short exact sequences
kernel of a homomorphism f

left global dimension of a ring R

ring of all n x n matrices with entries in k
category of left R-modules

category of right R-modules

natural numbers = {integers n : n > 0}
normalizer of a subgroup H in a group G

ring of integers in an algebraic number field E
orbit of an element x

projective unimodular group = SL(n, k) /center
rational numbers

quaternion group of order 8

generalized quaternion group of order 2"

real numbers

symmetric group-on n letters

symmetric group on a set X

signum of a permutation o

n x n matrices of determinant 1, entries in a field k
group of units in a ring R

unitriangular n X n matrices over a field k

I3 % I4, a nonabelian group of order 12

torsion subgroup of an abelian group G

trace of a matrix A
four-group

variety of an ideal I < k[xy, ...
integers

p-adic integers

center of a group G

center of a ring R

index of a subgroup H < G
degree of a field extension E/k
coproduct of objects in a category
product of objects in a category
external, internal direct sum
direct product

semidirect product

direct sum

direct product

inverse limit

y Xn]

; direct limit



Special Notation ‘

i Kronecker delta §;; =

XV

commutator subgroup

stabilizer of an element x

{g € G : mg = 0}, where G is an additive abelian group
{mg : g € G}, where G is an additive abelian group
p-primary component of an abelian group G
polynomials

rational functions

formal power series

polynomials in noncommuting variables

opposite ring

principal ideal generated by a

nonzero elements in a ring R

H is a subgroup of a group G

H 1is a proper subgroup of a group G

H is a normal subgroup of a group G

A is a submodule (subring) of a module (ring) B

A is a proper submodule (subring) of a module (ring) B
identity function on a set X

identity morphism on an object X

fl@)=b

number of elements in a set X

matrix of a linear transformation 7 relative to bases X and Y
Euler ¢-function

character afforded by a representation o

listay, ..., a, with a; omitted

binomial coefficient

1 ifi=j;
0 ifi#j.
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Things Past

This chapter reviews some familiar material of number theory, complex roots of unity, and
basic set theory, and so most proofs are merely sketched.

1.1 SOME NUMBER THEORY

Let us begin by discussing mathematical induction. Recall that the set of ratural numbers
N is defined by

N = {integers n : n > 0};

that is, N is the set of all nonnegative integers. Mathematical induction is a technique of
proof based on the following property of N:

Least Integer Axiom.! There is a smallest integer in every nonempty subset C of N.

Assuming the axiom, let us see that if m is any fixed integer, possibly negative, then
there is a smallest integer in every nonempty collection C of integers greater than or equal
tom. If m > 0, this is the least integer axiom. If m < O,thenC € {m,m+1,...,—-1}UN
and

c=(Cn{mm+1,...,-1})U(CNN).

If the finite set C N {m,m + 1, ..., —1} # o, then it contains a smallest integer that is,
obviously, the smallest integer in C; if CN {m,m + 1, ..., —1} = @, then C is contained
in N, and the least integer axiom provides a smallest integer in C.

Definition. A natural number p is prime if p > 2 and there is no factorization p = ab,
where a < p and b < p are natural numbers.

I'This property is usually called the well-ordering principle.
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