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Preface to the English Edition

The first edition of this book entitled Analysis on Riemannian Manifolds and
Some Problems of Mathematical Physics was published by Voronezh Univer-
sity Press in 1989. For its English edition, the book has been substantially
revised and expanded. In particular, new material has been added to Sections
19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla-
tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous
suggestions. My special thanks go to the referee for his valuable remarks on
the theory of stochastic processes. Finally, I would like to acknowledge the
support of the AMS fSU Aid Fund and the International Science Foundation
(Grant NZB000), which made possible my work on some of the new results
included in the English edition of the book.

Voronezh, Russia Yuri Gliklikh
September, 1995



Preface to the Russian Edition

The present book is apparently the first in monographic literature in which a
common treatment is given to three areas of global analysis previously consid-
ered quite distant from each other, namely, differential geometry and classical
mechanics, stochastic differential geometry and statistical and quantum me-
chanics, and infinite-dimensional differential geometry of groups of diffeomor-
phisms and hydrodynamics. The unification of these topics under the cover
of one book appears, however, quite natural, since the exposition is based on
a geometrically invariant form of the Newton equation and its analogs taken
as a fundamental law of motion. Our approach, therefore, depends heavily on
differential geometry of finite- or infinite-dimensional manifolds.

The monograph is addressed to mathematicians familiar with global anal-
ysis and requires certain mathematical culture as well as skills. We assume
that the reader is familiar with manifolds, vector and principal bundles, ten-
sors, and differential forms. This material can be found, for example, in the
first section of Chap. 6 of [141] and in Chaps. 2 to 4 of [120]. Throughout the
book, we also use the notions of connection, covariant derivative, and parallel
translation as well as some basic results from differential geometry stated in
a coordinate-free form. (See, e.g., [17] and [94].) For the sake of convenience,
we recall some results from the theory of connections in Appendix A which,
to some extent, can be regarded as a brief introduction to the subject.

Appendixes B to E are devoted to the theory of set-valued maps, theory of
stochastic processes, the It group and principal bundle, and Sobolev spaces.
Here our goal is, on the one hand, to give a necessary background and, on the
other hand, to provide the reader with some additional information relevant
to these topics but omitted in the main text.

Being limited by the size of a single book, we deliberately do not include
the material covered in a variety of other textbooks and monographs. Thus,
here we almost ignore Lagrangian and Hamiltonian systems and just briefly
touch upon some other important subjects. The leading role in the selection
of material was played, of course, by the author’s taste and research interest.

The book consists of three parts, which correspond to the aforementioned
branches of global analysis. In Chap. 1, we prove some general results con-
cerned with analysis on Riemannian manifolds, which are used in the subse-
quent chapters and, to the best of our knowledge, have not yet been reviewed
in monographs or textbooks. Here we include a necessary and sufficient con-
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dition for the completeness of a vector field, the basic construction of the
integral operator with Riemannian parallel translation, etc.

In Chap. 2, we describe the differential-geometric approach to classical
Newtonian mechanics. The Newton equation is introduced by means of the
covariant derivative with respect to the Levi-Civitd connection of the Rieman-
nian metric, giving rise to the kinetic energy on the configuration space. First,
we deal with the classical cases of potential mechanical systems, a gyroscopic
force, systems on Lie groups, etc. In addition to this, however, we study ge-
ometric mechanics of systems with discontinuous forces or forces with delay,
geometric mechanics with linear constraints in the sense of Vershik—Faddeev,
the integral equations of geometric mechanics (in terms of integral opera-
tors with Riemannian parallel translation), the velocity hodograph, etc. In a
certain sense, the material of Chap. 2 is a starting point for generalizations
studied in the subsequent chapters of the book.

Integral operators with Riemannian parallel translation are defined in
Chap. 3 and then used to study the qualitative behavior of geometric me-
chanical systems. In particular, under a very general hypothesis, we prove
that a pair of points (or a point and a submanifold) in a nonflat configuration
space can be connected by a trajectory of the mechanical system. (This is
true, for example, for a system with a discontinuous force, a system with a
constraint, etc.) Note, however, that in contrast to the standard case of a flat
configuration space, on a manifold we may have inaccessible points even when
the configuration space is compact and the force field is smooth and bounded.

Stochastic differential geometry studied in Chap. 4, which opens the sec-
ond part of the book, is a currently forming branch of global analysis. It is
the discovery of a relationship between differential geometry and the theory of
stochastic processes that has led to the invention of this geometrically invariant
theory having important applications to mathematical physics. Our exposition
is based on the Belopolskaya—Dalecky approach to defining Itd stochastic dif-
ferential equations on manifolds and on a generalization to the stochastic case
of integrals with Riemannian parallel translation introduced by the author.
Taken into account that the theory of stochastic processes and differential
geometry are customarily regarded as areas quite distant from each other and
that this book is mainly addressed to experts in geometry and global analysis,
we give a detailed review of the classical theory of stochastic processes in Sect.
12 (Chap. 4). In addition to this, some basic definitions from the theory can
be found in Appendix C. Throughout the book all the constructions based
on probability theory are accompanied by a number of references, yet major
attention is paid to the geometric interpretation of the constructions.

Chapters 5 and 6 of Part II concern applications of stochastic differential
geometry. In Chap. 5, we study the Langevin equation, which describes the
“physical” Brownian motion on a nonlinear configuration space and then, in
Chap. 6, Nelson’s stochastic mechanics, known to be equivalent to quantum
mechanics. We emphasize that the Langevin equation and the equation of
motion of stochastic mechanics are essentially different generalizations of the
Newton equation.
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Part III is devoted to the weak differential geometry of groups of dif-
feomorphisms of a compact manifold and the modern geometric Lagrangian
formalism of hydrodynamics proposed and developed by Arnold, Ebin, and
Marsden. In Sect. 7, we study the properties of Sobolev H*-diffeomorphisms
of an n-dimensional compact manifold with s > n/2 + 1. The Lagrangian
formalism arises naturally from the Newton equation on the group of such
diffeomorphisms taken as the configuration space. The basic example of this
construction is the so-called system of diffuse matter. The system of an ideal
barotropic fluid can then be obtained from the diffuse matter system by intro-
ducing a particular force field. (See Sect. 24.) Similarly, the system of an ideal
incompressible fluid, studied in Chap. 8, is described by means of a constraint
on the configuration space. Since the kinetic energy is a weak Riemannian
metric (i.e., it gives rise to the H%-topology, which is weaker than H*®), many
arguments of finite-dimensional differential geometry fail to apply to systems
arising in hydrodynamics, and thus new methods are to be developed to deal
with them. Note that the motion of an ideal incompressible fluid is given by
a C*®-smooth vector field on the tangent space to the manifold of diffeomor-
phisms. The passage to the Euler equation, also studied here, leads to the
loss of derivatives. We prove the local (in time) existence and regularity of
solutions for manifolds with or without boundary.

Methods of stochastic differential geometry are applied in Chap. 9 to de-
scribe the motion of a viscous incompressible fluid. Our model problem is to
study the motion on the n-dimensional flat torus. We define a class of processes
(analogous, in a certain sense, to geodesics) on the group of volume-preserving
diffeomorphisms of the torus whose mathematical expectations are the curves
on the group giving rise to the flow of the fluid. This approach is quite different
from the ones used before in the Lagrange formalism of hydrodynamics.

A more detailed review of the contents is given in the introductions to the
sections and chapters of the book.

Throughout the book, theorems, definitions, and formulas are designated
by two numbers, where the first one refers to the section; subsections within
a section are labeled by capital Roman letters. For example, Subsection A of
Section 7 is referred to as Sect. 7.A.

Remarks play an important role in the book. Sometimes a remark gives
some extra information, or it contains material (left without proof) to be
referred to later on.

In the book, we use the standard terminology and notation of modern
differential geometry. (See, e.g., [99] and [120].) Note, however, the following
exception: derivatives of a change of coordinates given in local charts as ¢; o ¢
are denoted by primes, e.g., (¢10¢)’ is the first derivative, (¢10¢)” the second,
etc. Here ¢; o ¢ is understood as a map between domains of a Euclidean space
and, for example, the second derivative is thought of as a bilinear map to the
same space. (See, e.g., [99].) Tensors obtained by lifting or lowering indexes
are said to be physically equivalent under the metric (see, [118]).

The list of references given in this book is by no means complete. The
emphasis is put on textbooks or monographs, rather than original papers.
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In conclusion, the author would like to express his deep gratitude to his
former adviser Yuri G. Borisovich for his constant attention, support, and nu-
merous fruitful discussions. I am in great debt to him for drawing my interest
to the subject of this book. I am also grateful to Yuri S. Baranov, Boris D.
Gel’dman, and Igor V. Fedorenko, my coauthors in a number of papers cited
in this book, for their help and interest in our joint work. My special thanks
go to Yana I. Belopolskaya, Yuri L. Dalecky, Vladimir Ya. Gershkovich, Alek-
sandr I. Shnire’man, and Anatolii M. Vershik for our useful discussions and
to my wife Olga for her infinite patience.

Voronezh, Russia Yuri Gliklikh
April, 1989



Table of Contents

Preface to the English Edition ...........................

Preface to the Russian Edition ............c.ciiiviiiiann.

Part I. Finite-Dimensional Differential Geometry and Mechanics

Chapter 1
Some Geometric Constructions in Calculus on Manifolds

1. Complete Riemannian Metrics and the Completeness of

Vector Fields: 7+ SVl ale, . 0R ST PR SR EGSIaTELE IR

1.A A Necessary and Sufficient Condition for

the Completeness of a Vector Field ................

1.B A Way to Construct Complete Riemannian Metrics
2. Riemannian Manifolds

Possessing a Uniform Riemannian Atlas ..................
3. Integral Operators with Parallel Translation ...............
3. Al ThHeIDperBtori ST, JunmavE baia il ol . 81, ..
B - The Operator fc s i s mi e« BIVOLSBIERS .o ds v eis
3.C~ Lintegral:Operators-y. .0 00 i i o enoitded. R 8L
Chapter 2
Geometric Formalism of Newtonian Mechanics ..............
4. Geometric Mechanics: Introduction and
Review of Standard Examples ......................00u..
4.A - Basio'Notions: <0 e ilifa o HESISUPE 91 55108
4B  Some Special Classes of Force Fields ...............
4.C Mechanical Systemson Groups ..............c..v...
5. Geometric Mechanics with Linear Constraints .............
5.A Linear Mechanical Constraints ....................
5B Reduced Connections .....................ccnuu...

5.C Length Minimizing and Least-Constrained

Nonholonomic Geodesics: .7 v v vvsbon s isovasinssns

6. Mechanical Systems with Discontinuous Forces and Systems

with Control: Differential Inclusions ......................

7. Integral Equations of Geometric Mechanics:

The Velocity Hodograph™. civoganl adida caolialolmeasis ..
7.A General Constructions ............cciviiinivennnn.



X Table of Contents

7.B Integral Formalism of Geometric Mechanics with

ConBtraints . .tok, dv it nsmist ot bk weis Kb 2wt g b 31
8. Mechanical Interpretation of Parallel Translation and
Systems with Delayed Control Force ..................... 32
Chapter 3
Accessible Points of Mechanical Systems ..................... 39
9. Examples of Points that Cannot Be Connected by
8 EAICCEOrY s L o T . 5 s T s 5 ot i v b e n el e wes 40
10. The Main Result on Accessible Points .................... 41
11. Generalizations to Systems with Constraints .............. 45

Part II. Stochastic Differential Geometry and its Applications to

Physics

Chapter 4

Stochastic Differential Equations

on Riemannian Manifolds .................. ... ... 49

12. Review of the Theory of Stochastic Equations and Integrals

on Finite-Dimensional Linear Spaces ..................... 49
12.A° Wiener Processes . ..i.....:isoknald selanacamist. .. 49
12.B. . The It6 Integedldy osinsimaid) snialinil o gamesesoT - 50

12.C The Backward Integral and the Stratonovich Integral 53
12.D The It6 and Stratonovich Stochastic Differential

BEqQuations (. G vecn cmonsis Loaohsipgir et . . He. .. 54
12.E . - Solutionsof: SDEs.. .i.... . mmdasesio: isomedal . 5h .. . 56
12.F Approximation by Solutions of Ordinary Differential
| DT AT 1 e S AL o P B B I SR T s T 57
12.G A Relationship Between SDEs and PDEs ............ 58
13. Stochastic Differential Equations on Manifolds ............ 59
14. Stochastic Parallel Translation and the Integral Formalism
for the Ito EQUSEIONSE. ... ilesii e i puosionms oupit- « oid he o 67
15. Wiener Processes on Riemannian Manifolds and Related
Stochastic Differential Equations ........................ 76
15.A Wiener Processes on Riemannian Manifolds ......... 76
15.B  Stochastic EQUationsis 53 inlaueleusds sammerdols oo o 5« o 78
15.C Equations with Identity as the Diffusion Coefficient .. 80
16. Stochastic Differential Equations with Constraints ......... 83
Chapter 5
The Langevin Equation ... .sseciedest daatnaeabisd domadd abicame o o 87
17. The Langevin Equation of Geometric Mechanics ........... 87

18. Strong Solutions of the Langevin Equation,
Ornstein—Uhlenbeck Processes ........................... 91



Table of Contents XI

Chapter 6 .
Mean Derivatives, Nelson’s Stochastic Mechanics, and
QUantIZation . . iviis i v cashiibivivhns s sva s s b o REEL A SRRSO 95
19. More on Stochastic Equations and
Stochastic Mechanics in IR™ ... ... tiuiieiineiiiinennnns 96
19.A ' PreliminarlesdicanaDict stiiviamsiSoaageliod.  JAA80 7. . 96
19.B Forward Mean Derivatives ........................ 97
19.C Backward Mean Derivatives and Backward
Equations . ... sbruel st blaasdl foda . ... ... .. 98
19.D Symmetric and Antisymmetric Derivatives .......... 101
19.E The Derivatives of a Vector Field Along £(¢) and
the Accelerstionof (1) atpuotl dim bicthanld s.na ... 106
19.F Stochastic Meehanics . contengmmilU-HoGnl . 0. .. 107
20. Mean Derivatives and Stochastic Mechanics
on Riemannian Manifolds ........... ... 0 iiiiiiiiinnenn 109
20.A Mean Derivatives on Manifolds and
Holated BaustiDnNg: [s . 5y e van et e siics e o Auesstoia nlicott 109
20.B Geometric Stochastic Mechanics ................... 114
20.C The Existence of Solutions in Stochastic Mechanics .. 115
21. Relativistic Stochastic Mechanics ............ ... unn. 125

Part III. Infinite-Dimensional Differential Geometry and

Hydrodynamics
Chapter 7
Geometry of Manifolds of Diffeomorphisms .................. 133
22. Manifolds of Mappings and Groups of Diffeomorphisms ..... 133
22.A Manifolds of Mappings .........ccoovvuivincnnnnnnn 133
22.B The Group of H?®-Diffeomorphisms ................. 134
22.C Diffeomorphisms of a Manifold with Boundary ...... 136
22.D Some Smooth Operators and
Vector Bundlesover D*(M) ........ccovvivuinnnn.. 137
23. Weak Riemannian Metrics and Connections
on Manifolds of Diffeomorphisms ........................ 139
23.A The Case of a Closed Manifold .................... 139
23.B The Case of a Manifold with Boundary ............. 141
23.C The Strong Riemannian Metric .................... 141
24. Lagrangian Formalism of Hydrodynamics
of an Ideal Barotropic:Fluids s inaid huss seloaaidiabf v covin. 142
24.A. . Diffuse Mattesi &40 Lastomin's sl BasGaenni.oab oids . 142

24.B. . A BarotropicFluid' .. ..., .0 . SansaPwsiode® . . 143



XII Table of Contents

Chapter 8
Lagrangian Formalism of Hydrodynamics of an Ideal

Iacompetenibde - BIald . oce i, 6.5 aaidst, Jlabvla ool cenidaoidsxis 147

25. Geometry of the Manifold of Volume-Preserving
Diffeomorphisms and LHSs of an Ideal Incompressible Fluid . 147

25.A Volume-Preserving Diffeomorphisms

of a"Closed: Manifald £i8irath. senldt Humwreil B0, 148
25.B Volume-Preserving Diffeomorphisms

of a Manifold with Boundary ...................... 151
25.C LHS’s of an Ideal Incompressible Fluid ............. 152

26. The Flow of an Ideal Incompressible Fluid
on a Manifold with Boundary as an LHS
with an Infinite-Dimensional Constraint

on the Group of Diffeomorphisms of a Closed Manifold ..... 156
27. The Regularity Theorem and a Review of Results
on the Existence of Solutions ............................ 164
Chapter 9

Hydrodynamics of a Viscous Incompressible Fluid and
Stochastic Differential Geometry

of Groups of Diffeomorphisms ............................... 171
28. Stochastic Differential Geometry on the Groups of
Diffeomorphisms of the n-Dimensional Torus .............. 172
20.—A-Viscous.-Incempressible:Fluid - i v ol iincm i ionrare oo 175
Py e T T | ol Ty o o roa e e PR R S e B e e SRS S 179
A. Introduction to the Theory of Connections ................ 179
Connections on Principal Bundles ................. 179
Connections on the Tangent Bundle ................ 180
Covariant: Derivatives =0 inh v gluaiwmin e Sdi . 181
Connection Coefficients and Christoffel Symbols ..... 183
Second-Order Differential Equations and the Spray .. 185
The Exponential Map and Normal Charts .......... 186
B. Introduction to the Theory of Set-Valued Maps ............ 186
C. Basic Definitions of Probability Theory and :
the Theory of Stochastic Processes ....................... 188
Stochastic Processes and Cylinder Sets ............. 188
The Conditional Expectation ...................... 188
Markovian: Processes oGl o GnliGangnisasninasd . . 189
Martingales and Semimartingales .................. 190
D. The Ité Group and the Principal Ité Bundle .............. 190
B, 50 SobOIBVESBECRE . o v v s e s ool A L STaS L. 191
F. Accessible Points and Closed Trajectories of
Mechanical Systems (by Viktor L. Ginzburg) .............. 192

Growth of the Force Field and Accessible Points ..... 193



Table of Contents XIII

Accessible Points in Systems with Constraints ....... 197

Closed Trajectories of Mechanical Systems .......... 198
RelOrORCOE. . T i S e iss et a0 Toe e e et e e SR B i 203
211

J £V [ Jpenee il s e A MG Sl e P B B R T



Part I
Finite-Dimensional Differential
Geometry and Mechanics

This part consists of three chapters, the last two of which are devoted to
studying classical mechanical systems with finitely many degrees of freedom.
Here we use freely the notions of modern differential geometry, with which
the reader is assumed to be familiar. (See the Preface.) A brief review of this
material can be found in Appendix A. In Chap. 1 we deal with some appli-
cations, attributed to the author, of finite-dimensional differential geometry
to the analysis on manifolds. These results will be used in the subsequent
chapters of the book, in particular, in Chaps. 2 and 3.






Chapter 1. Some Geometric Constructions
in Calculus on Manifolds

1. Complete Riemannian Metrics and the
Completeness of Vector Fields

In this section, we shall study conditions that guarantee that all integral curves
of a vector field on a finite-dimensional manifold exist on the interval (—oo, 00).
A vector field with this property is called complete. We shall give a criterion
for completeness that uses special Riemannian metrics on the phase space.

1.A. A Necessary and Sufficient Condition for the
Completeness of a Vector Field

Many criteria for the extendability to (—oo, o0) of the solutions of differential
equations in vector spaces are known (see, e.g., the Bibliography in [61]). It
is easy to see that, under the hypotheses of some of these theorems, one can
define a new Riemannian metric on the phase space in such a way that the
right-hand side of the equation is bounded by a constant with respect to this
metric. Thus, in these cases, the extendability of solutions (the completeness
of a vector field) follows from the fact that a solution has bounded length
on every finite interval with respect to a complete Riemannian metric and,
therefore, is relatively compact.

It turns out that the requirement that the vector field should be bounded
with respect to a complete Riemannian metric can be modified in such a way
that it becomes necessary and sufficient.

Let M be a finite-dimensional smooth manifold and X (¢, m) a vector field
which is smooth jointly in ¢ and m. Denote the direct product M x IR by M+,
Obviously, T(myM* = T, M x IR. Define a vector field X* on M+ setting

X(‘:n’t) = (X (m,t),1).

Theorem 1.1 ([61]). A field X on M is complete if and only if there exists a
complete Riemannian metric on M+ such that X+ is uniformly bounded with

respect to it.

Proof. Obviously, the completeness of X is equivalent to the completeness of
the vector field X .
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Assume that there exists a complete Riemannian metric on M+, with
respect to which the field X* is bounded. Then every integral curve of X+
has finite length on every finite interval. Since the metric is complete, the last
assertion implies the relative compactness of the integral curve on every finite
interval. This yields the completeness of the field.

Let us prove the “only if” assertion. Let X be complete, then so is X +.
Since the field X is smooth by the hypotheses of the theorem, the field X+ is
smooth as well. Consider an arbitrary smooth proper real-valued function g
on the manifold M. We will call a map proper if the preimage of a compact
set is compact, i.e., in our case, the preimage of a compact set in IR under the
map g is compact in M. The function g, satisfying the aforesaid conditions,
can be constructed, for example, as follows (see [77]). Choose a countable
covering of M by relatively compact open sets; this can be done by virtue of the
paracompactness and the local compactness of M. Let us label the elements of
the covering with integral numbers, and define a smooth constant function on
each element of the covering to be equal to the number of the element. With
the help of a partition of unity, glue these functions to obtain a function g
on M, which satisfies the above conditions. Pick an inner product depending
smoothly on (m, t) on each tangent space T(,, +) (M x {t}) to the submanifold
M x {t} of the manifold M*. For example, one can take a Riemannian metric
on M and extend it in a natural way. Now we can construct a Riemannian
metric {,), on M* by regarding the vectors of the field X* as being of unit
length and orthogonal to the subspaces T(m,)(M X {t}).

Denote by @; the diffeomorphism of the manifold M x {0} to the manifold
M x {t} along the trajectories of the field X*. The function g can be regarded
as given on M x {0}. Since the integral curves of the field X+ are globally
extendable, the function f: M+ — IR, given by the formula

f(m,t) = g(®7'(m,t)) +1t ,

is, obviously, smooth and proper. Clearly, X* f = 1, where X* f is the deriva-
tive of the function f in the direction of the field X+.
Let us now choose an arbitrary smooth function ¢: M+ — IR such that

¢(m,t) > maxexp(Y f)? ,

where Y € T(jn+)(M x {t}) and ||Y||, = 1. Such a function can be defined as
follows. For a relatively compact neighborhood of every point (m/,t’) € M+,
there exists a constant greater than sup maxexp(Y f)2, where, as above, Y €
Tim,t)(M x {t}) and |[Y|l; = 1, and the supremum is taken over all points
(m,t) from the neighborhood. Then, using the paracompactness of M+ and,
as a consequence, the existence of a smooth partition of unity, we glue the
function ¢ defined on the whole of M*.

At every point (m,t) € M+, define the inner product on T, )M+ by the
formula

Y, 2), = ¢*(m, 1) (PmY,pmZ), + pxY py X ,



