Reading in Mathematics

Wolfgang Walter

Ordinary

Differential

Equations
WSS IR

Springer-Verlag
Z PR S 3)



Wolfgang Walter

Ordinary Differential
Equations

Translated by Russell Thompson

Springer

PIZEN
c($‘p



3 #: Ordinary Differential Equations

£  #F: W Walter

R E EMAAE

H A& HAEBHEARILRAS

6B & JumitEenRT

£ {7 tHREPHERAFTIERAT @ERPAKE 1375 100010)
BR®IE:  010-64015659, 64038347 [N
BF{EME:  kjsk@vip.sina.com

FOE: 24 Ep 3K: 16.75

HARFR: 2003F6H

# 8. 7-5062-5928-1/0 « 347

MEAREE:  E¥:01-2003-3766

£ #: 39.007T

5@ HAE A AL 52 5 © #%48 Springer-Verlag 4% & & X Bk
PREENRIT.



Graduate Texts in Mathematics

182

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Readings in Mathematics

Editorial Board

* S. Axler F.W. Gehring K.A. Ribet



Graduate Texts in Mathematics
Readings in Mathematics

Ebbinghaus/Hermes/Hirzebruch/Koecher/Mainzer/Neukirch/Prestel/Remmert: Numbers
Fulton/Harris: Representation Theory: A First Course
Remmert: Theory of Complex Functions

Undergraduate Texts in Mathematics
Readings in Mathematics

Anglin: Mathematics: A Concise History and Philosophy
Anglin/Lambek: The Heritage of Thales

Bressoud: Second Year Calculus

Hairer/Wanner: Analysis by Its History
Hammerlin/Hoffmann: Numerical Mathematics

Isaac: The Pleasures of Probability

Samuel: Projective Geometry

Stillwell: Numbers and Geometry

Toth: Glimpses of Algebra and Geometry



Wolfgang Walter Russell Thompson

Mathematisches Institut I Utah State University

Universitdt Karlsruhe College of Science

D-76128 Karlsruhe Department of Mathematics and Statistics

Germany Logan, UT 84322-3900

Edirorial Board

S. Axler F.W. Gehring K.A. Ribet

Mathematics Department Mathematics Department Mathematics Department

San Francisco State East Hall University of California
University University of Michigan at Berkeley

San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840

USA USA USA

Mathematics Subject Classification (1991): 34-01

Library of Congress Cataloging-in-Publication Data
Walter, Wolfgang, 1927~
Ordinary differential equations / Wolfgang Walter.
p- cm. — (Graduate texts in mathematics ; 182. Readings in
mathematics) ]
Includes bibliographical references and index.
ISBN 0-387-98459-3 (hardcover : alk. paper)
1. Differential equations. [ Title. II. Series: Graduate texts
in mathematics ; 182. III Series: Graduate texts in mathematics.
Readings in mathematics.
QA372.W224 1998
515”.352—dc21 98-4754

Printed on acid-free paper.

© 1998 Springer-Verlag New York, Inc.

-All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in
the People’s Republic of China only and not for export therefrom.
Reprinted in China by Beijing World Publishing Corporation, 2003

987654321

ISBN 0-387-98459-3 Springer-Verlag New York Berlin Heidelberg SPIN 10663185



Preface

The author’s book on Gewdéhnliche Differentialgleichungen (Ordinary Dif-
ferential Equations) was published in 1972. The present book is based on a
translation of the latest, 6th, edition, which appeared in 1996, but it also treats
some important subjects that are not found there. The German book is widely
used as a textbook for a first course in ordinary differential equations. This is
a rigorous course, and it contains some material that is more difficult than that
usually found in a first course textbook; such as, for example, Peano’s existence
theorem. It is addressed to students of mathematics, physics, and computer sci-
ence and is usually taken in the third semester. Let me remark here that in the
German system the student learns calculus of one variable at the gymnasium®
and begins at the university with a two-semester course on real analysis which
is usually followed by ordinary differential equations.

Prerequisites. In order to understand the main text, it suffices that the
reader have a sound knowledge of calculus and be familiar with basic notions
from linear algebra. For complex differential equations, some facts about holo-
morphic functions and their integrals are required. These are summarized at
the beginning of § 8 and more fully described and partly proved in part C of the
Appendix. Functional analysis is developed in the text when needed. In several
places there are sections denoted as Supplements, where more special subjects
are treated or the theory is extended. More advanced tools such as Lebesgue’s
theory of integration or Schauder’s fixed point theorem are occasionally used in
those sections. The supplements and also § 13 can be omitted in a first reading.

Outline of contents. The book treats significantly more topics than can
be covered in a one-semester course. It also contains material that is seldom
found in textbooks and—what is perhaps more important—it uses new proofs
for basic theorems. This aspect of the book calls for a closer look at contents and
methods with emphasis on those places where we depart from the mainstream.

The first chapter treats classical cases of first order equations that can be
solved explicitly. By means of a number of examples the student encounters the
essential features of the initial value problem such as uniqueness and nonunique-
ness, maximal solutions in the case of nonuniqueness, and continuous depen-
dence on initial values in the small, but not in the large; see 1.VI-VIIIL. The

1In the German school system, the gymnasium is an academic high school that prepares
students for study at the university.
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phase plane and phase portraits are explained in 3.VI-VIIIL.

The theory proper starts with Chapter II. In this and the following chapter
the initial value problem is treated first for one equation and then for systems
of equations. The repetition caused by this separation of cases is minimal since
all proofs carry over, while the student has the benefit that the reasoning is not
burdened by technicalities about vector functions. The complex case, where
the solutions are holomorphic functions, is treated in § 8; the proofs follow the
pattern set in § 6 for the real case. The theory of differential inequalities in §
9 is one-dimensional by its very nature. An extension to n dimensions leads to
new phenomena that are treated in Supplement I of § 10.

Chapter IV is devoted to linear systems and linear differential equations of
higher order. In a Supplement to § 18 the Floquet theory for systems with
periodic coefficients is presented.

Linear systems in the complex domain is the topic of Chapter V. The main
properties of systems with isolated singularities are developed in a novel way
(see below). Equations of mathematical physics are discussed in § 25.

The main subject of Chapter VI is the Sturm-Liouville theory of boundary
value and eigenvalue problems. Nonlinear boundary value problems and corre-
sponding existence, uniqueness, and comparison theorems are also treated. In
§ 28 the eigenvalue theory for compact self-adjoint operators in Hilbert space is
developed and applied to the Sturm-Liouville eigenvalue problem.

- The last chapter deals with stability and asymptotic behavior of solutions.
The linearization theorem of Grobman-Hartman is given without proof (the
author is still looking for a really good proof). The method of Lyapunov is
developed and applied in § 30.

An appendix consisting of four parts A (topology), B (real analysis), C
(complex analysis), and D (functional analysis) contains notions and theorems
that are used in the text or can lead to a deeper understanding of the subject.
The fixed point theorems of Brouwer and Schauder are proved in B.V and D.XII.

In closing this overview, we point out that applications, mostly from me-
chanics and mathematical biology, are found in many places. Exercises, which
range from routine to demanding, are dispersed throughout the text, some with
an outline of the solution. Solutions of selected exercises are found at the end
of the book.

Special Features. Two general themes exercise a profound influence through-
out the book: functional analysis and differential inequalities.

Functional Analysis. The contraction principle, that is, the fixed point
theorem for contractive mappings in a Banach space, is at the center. This the-
orem has all necessary properties to make it a fundamental principle of analysis:
It is elementary, widely applicable, and far-reaching.? Its flexibility in connec-
tion with our subject comes to light when appropriate weighted maximum norms

2A remarkable theorem of Bessaga (1959) sheds light on the versatility of the contraction
principle. Consider a map T : S — S, where S is an arbitrary set, and assume that T has a
unique fixed point which is also the only fixed point of 72,73, .... Then there is a metric on
S that makes S a complete metric space and T a contraction. One can even find metrics for
which the Lipschitz constant of T is arbitrarily small.
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are used. A first example is found in the dissertation of Morgenstern (1952);
references to later authors in the literature are historically unjustified. In linear
complex systems, the weighted maximum norm in 21.II leads to global existence
without using analytic continuation and the monodromy theorem. Moreover,
this proof gives the growth properties of solutions that are needed in the treat-
ment of singular points. The theorems on continuous dependence on initial
values and parameters and on holomorphy with regard to complex parameters
follow directly from the contraction principle, a fact which is still little known.
Differentiability with respect to real parameters requires Ostrowski’s theorem
on approximate iteration 13.IV.

In the treatment of linear systems with weakly singular points, the crucial
convergence proofs are also reduced to the contraction principle in a suitable
Banach space.? For holomorphic solutions, i.e., power series expansions, this
method was discovered by Harris, Sibuya, and Weinberg (1969). The logarith-
mic case can also be treated along these lines. This approach leads also to
theorems of Lettenmeyer and others, which are beyond the scope of this book;
cf. the original work cited above.

A theorem in Appendix D.VII, which is partly due to Holmes (1968), estab-
lishes a relation between the norm of a lineatr operator and its spectral radius.
As explained in Section D.IX, this result gives a better insight into the role of
weighted maximum norms.

Differential Inequalities. The author, who also wrote the first monograph
on differential inequalities (1964, 1970), has encountered many instances where
authors are unaware of basic theorems on differential inequalities that would
have made their reasoning much simpler and stronger. The distinction between
weak and strong inequalities is a matter of fundamental importance. In partial
differential equations this is common knowledge: weak maximum or comparison
principles versus strong principles of this type. Not so in ordinary differential
equations. Theorem 9.IX is a strong comparison principle that prescribes pre-
cisely the occurrence of strict inequalities, while most (all?) textbooks are con-
tent with the weak “less than or equal” statement. This principle is essential
for our treatment of the Sturm-Liouville theory via Priifer transformation. Its
usefulness in nonlinear Sturm theory can be seen from a recent paper, Walter
(1997).

Supplement I in § 10 brings the two basic theorems on systems of differen-
tial inequalities, (i) the comparison theorem for quasimonotone systems, and (ii)
Max Miiller’s theorem for the general case. Both were found in the mid twen-
ties. Quasimonotonicity is a necessary and sufficient condition for extending the
classical theory (including maximal and minimal solutions) from one equation
to systems of equations. More recently, both theorems (i) and (ii) have been
applied to population dynamics, but it is not generally known that results on

3The Banach space Hg of 24.1, which is indeed a Banach algebra, can be used for a short
and elegant proof of two fundamental theorems for functions of several complex variables, the
preparation theorem and the division theorem of Weierstrass. This proof has been propagated
by Grauert and Remmert since the sixties and can be found, e.g., in their book Coherent
Analytic Sheaves (Grundlehren 265, Springer 1984); cf. Walter (1992) for other applications.
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invariant rectangles are special cases of Miiller’s theorem. Theorem 10.XII is
the strong version of (i); it contains M. Hirsch’s theorem on strongly monotone
flows, cf. Hirsch (1985) and Walter (1997).

A Supplement to § 26 describes a new approach to minimum principles for
boundary value problems of Sturmian type that applies also to nonlinear differ-
ential operators; cf. Walter (1995). The strong minimum principle is generalized
in 26.XIX, so that it includes now the first eigenvalue case.

In Supplement II of § 26 on nonlinear boundary value problems the method
of upper and lower solutions for existence and Serrin’s sweeping principle for
uniqueness are presented.

Miscellaneous Topics. Differential equations in the sense of Carathéo-
dory. The initial value problem is treated in Supplement II of § 10 and a Sturm-—
Liouville theory under Carathéodory assumptions in 26.XXIV and 27.XXI. As a
rule, the earlier proofs for the classical case carry over. This applies in particular
to the strong comparison theorem 10.XV and the strong minimum principle in
26.XXV.

Radial solutions of elliptic equations. This subject plays an active role in
recent research on nonlinear elliptic problems. The radial A-operator is an op-
erator of Sturm-Liouville type with a singularity at 0. The corresponding initial
value problem is treated in a supplement of § 6, and the eigenvalue problem and
nonlinear boundary value problems for the unit ball in R™ (for radial solutions)
in a Supplement to § 27.

Separatrices is the theme of a Supplement in § 9. Differential inequalites are
essential for proving existence and uniqueness.

Special Applications. We mention the generalized logistic equation in a sup-
plement to § 2, general predator-prey models in 3.VII, delay-differential equa-
tions in 7.XIV-XV, invariant sets in 10.XVI and the rubber band as a model for
nonlinear oscillations in a nonsymmetric mechanical system in 11.X.

Ezact Numerics. We give examples in which a combination of a numerical
procedure and a sup-superfunction technique allows a mathematically exact
computation of special values. The numerical part is based on an algorithm,
developed by Rudolf Lohner (1987, 1988), that computes exact enclosures for
the solutions of an initial value problem. In blow-up problems one obtains rather
sharp enclosures for the location of the asymptote of the solutions; cf. 9.V. A
different kind of sub- and supersolutions is used to compute a separatrix; in
general, a separatrix is an unstable solution.

Acknowledgments. It is a pleasure to thank all those who have contributed
to the making of this volume. The translator, Professor Russell Thompson,
worked with expertise and patience in the face of changes and additions during
the translation and furnished beautiful figures. He also suggested an improved
division into chapters. Irene Redheffer acted as a mediator between author and
translator with exceptional care and insight and translated the Solutions section.
Her help and advice and that of Professor Ray Redheffer were indispensable.
My sincere thanks go to all of them and also to other helping hands and minds.

Karlsruhe, August 1997 Wolfgang Walter



Note to the Reader

In references to another paragraph, the number of the paragraph is given
before the number of the formula, theorem, lemma,.... For example, formula
(7) in § 15 is denoted as (15.7), and theorem 15.1II or corollary 15.I1I refers to
the theorem or corollary in section III of § 15. But when citing within § 15, we
write simply formula (7), Theorem III, and Corollary III. A reference to B.V
refers to Section V in Part B of the Appendix.

When the name of an author is followed by the year of publication, as in
Perron (1926), the source is found in the bibliography at the end of the book.
My two books on analysis are cited as Walter 1 and Walter 2. A compilation of
general notions and a list of symbols are found at the end of the book.

The German word Ansatz is used repeatedly; a footnote in Part II of the
introduction gives an explanation.

xi
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Introduction

A differential equation is an equation containing independent variables, func-
tions, and derivatives of functions. The equation

Y +2zy =0 (1)
is a differential equation. Here z is the independent variable and vy is the un-
known function. A solution is a function y = ¢(z) that satisfies (1) identically
in z, that is, ¢ (z) 4 2z - ¢(z) = 0. It is easy to check that the function y = e~
is a solution of (1): -

d
E;(e‘xz)+2ze"’250 for —oo<z <00

We will see later that the collection of all solutions of (1) can be written in the

formy=C- e"z, where C runs through the set of real numbers.
Equation (1) is a differential equation of first order. The general differential
equation of first order has the form

F(z,y,y") = 0. (2)

A function y = y(z) is called a solution of (2) in an interval J if y(z) is differ-
entiable in J and

F(z,y(z),y'(z)) =0 holds for all z € J.

If a differential equation contains higher order derivatives, say up to nth
order, then the equation is called an nth order differential -equation. Such an
equation can always be written in the general form

F(z,y,¢,...,y™) =0. (3)

Here a solution is defined to be an n-times differentiable function such that
equation (3) is satisfied identically when y(z) and its derivatives are substituted
into F'. A differential equation of nth order is called explicit if it has the form

™ = f(z, 9,95 .,y D); (4)

otherwise it is called implicit. For a first order ordinary differential equation the
explicit form is

Y = f(z,y). (5)



2 Introduction

The above comments apply to ordinary differential equations, that is, to
differential equations for functions y(z) of a single independent variable z. If
several independent variables and hence also partial derivatives are present, then
the equation is called a partial differential equation. For example,

Uy +Uy =T+ Y

is a partial differential equation of first order for an unknown function u(z,y).
The function u(z,y) = zy is a particular solution to this equation. An important
example of a second order partial differential equation is the potential equation
in three-space

AU = Ugg + Uyy + Uz =0,

where u = u(z,y, 2).

In this book we will be concerned only with ordinary differential equations.
The primary emphasis will be on differential equations in the real domain where
the independent variable x is a real variable and y(z) is a real function. However,
the fundamental facts about differential equations in the complex domain will
also be treated.

The expression integral of a differential equation is another term used for a
solution, and the terms solution curve and integral curve are used to emphasize
the geometric interpretation of a solution as a curve. A family of functions
y(z; C4,...,Cy), depending on z and n parameters C1,...,Cy, (which vary in a
point set M C R"), is called a complete integral or a general solution of the nth
order differential equation (4) if it satisfies the following two requirements: first,
each function y(z; Cy,...,C,) is a solution to the differential equation (4) for an
arbitrary choice of the parameters (Ci,...,C,) € M, and second, all solutions
can be obtained in this manner. The notion of a general solution does not play
a major role in the theory of differential equations. It is used here in connection
with simple examples, where it is actually possible to give all solutions explicitly
in a form depending on n parameters.

Differential equations play a cardinal role in the natural sciences and tech-
nology, especially in physics, for the simple reason that many physical laws take
the form of a differential equation. Differential equations also appear in other
scientific domains where mathematical models and theories are used. The three
examples that follow are intended to give a first impression of the type of prob-

lems that arise. They all deal with the motion of a body in a gravitational
field.

I. Free Fall. When a body at rest is suddenly released, it falls downward
under the influence of gravity. This motion can be described mathematically
by a function s = s(t) which gives the distance that the body (or more exactly,
its center of mass) has traveled up to time ¢. Other quantities of interest that

can be derived from s include the instantaneous velocity v(t) = %s(t) = §(t)

and the acceleration a(t) = %v(t) = §(t). (When describing processes in which
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the independent variable represents time, it is customary to denote the inde-
pendent variable by ¢ instead of z, and derivatives by dots instead of primes.)
We learn in elementary mechanics that the acceleration of such bodies may be
assumed to be constant, in fact, equal to the acceleration g due to gravity at the
earth’s surface. Thus the distance-time function s(t) satisfies the second order
\diﬁerential equation

§=g. (6)

It is easy to find all of the solutions here. Indeed, it follows from integrating the
equation ¥(t) = g that v(t) = gt + C1, and likewise from $(t) = gt + C; that

s(t) = %Qtz +Cit+Cy  (Ch, C; constant).

We have thus found the complete integral of the differential equation (6).

To go from this family of § = g to the solution that corresponds to a partic-
ular physical process requires some additional information, the so-called initial
conditions. Let us assume, for instance, that in the example above the body
is at rest and is then released at time t = 0. Corresponding initial conditions
are given by s(0) = 0 and $(0) = v(0) = 0. From the first of these conditions
it follows that Cy = 0, from the second that C; = 0, and in this manner one
obtains the solution

s(t) = % gt2.

Other initial conditions lead in a like manner to other solutions.

II. Free Fall from a Large Distance. Now suppose that the body is
at a large distance from the earth. The assumption of constant gravitational
acceleration made in I is valid only near the surface of the earth. According

to Newton’s law of gravitation, two bodies a distance s apart with masses M

M
(earth) and m (test body) attract each other with a force equal to K = 'y—STm,

where v is the gravitational constant. By Newton’s second law the acceleration
now satisfies the equation

.. 1
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The minus sign on the right-hand side indicates that the direction of the force
is opposite to the positive s-direction. This differential equation of second order
is significantly more difficult to integrate than equation (6). Nonetheless, the
solutions can be given explicitly; we will return to this later in §11.XII. Suppose
that at time ¢ = 0 a test body is located a distance R from the earth’s center
and released at rest. Then one has for initial conditions s(0) = R, $(0) = 0.

A simple and sometimes successful method of finding solutions to a differen-
tial equation is to look for a likely “ansatz”* (possibly containing parameters)
and to investigate whether it leads to a solution. We will try this approach in
the case of equation (7) using the ansatz

s(t)=a-t’
When this function is substituted into equation (7), the result is
ab(b—1)t*"2 = —yMa~2t"%,
Equating exponents and coefficients leads to b — 2 = —2b, that is, b = %, and

a-2(-1) = —yMa~2, from which follows a = (9yM/2)'/3. Thus s(t) = a-t*/3
is a solution. It is easy to check that any function of the form

s(t) =a(c+£t)¥® with a=(9yM/2)'/3, carbitrary, (8)

is a solution to the differential equation (7) as long as ¢+t > 0. Note that none
of the solutions from this collection satisfies the initial conditions mentioned
above. The solution

o (BvEE )\
s(t)=a Neoodl )

for example, satisfies s(0) = R, but v(0) = 5(0) = —y/2yM/R. This describes
an object falling to earth from the position s = R with initial speed at time
t =0 equal to \/2yM/R.

One of the solutions of (8) with ¢ =0 is

3(t) = at?¥/3. (9)

An object on this trajectory does not return to earth, since §(t) — oo as t — oo;
however, the velocity #(t) = 2at~'/3 tends to 0 as t — o0o. Since #(t)? - 5(t) =

4The word ansatz is a German word that has become part of modern mathematical lan-
guage; it has no exact English counterpart. An ansatz is an “educated guess” at the probable
form of a solution. The plural of ansatz is ansdtze.



