E R miRiE

(EBEA i+ = 11 7 51 5 i

C++HEBREFIRIT @

*BF EH BEMW mE

BoFSi :
s . HIERZ AT

it ¥ + ¢ EETEEET]

BF B BEMH RE

AEXE R

e

ERHAWETFEAFHREBORE, EREET/NE.
RRALET A, B R. @M EIE: 010-62782989 13701121933

E B4 B (CIP) ##7

CHHiEFRF B FICR/FBFT 457 MM E. —Jbo . R E MR, 2015
AR ET ORI B
ISBN 978-7-302-37484-8

L @C: 1. OFp--- Ot~ Q- [I. OCEE —BFRH —EEER—#HH—%EX N. OTP312
o E A B4R CIP B 57 (2014) 55 170853 5

BERE:- W K B W
HERIt: ¥EE
wERY. 5 W
RS 3k M=

HAR&Z AT : K% R

] ik . http://www. tup. com. c¢n, http://www. wgbook. com
b Hh: JEEERREFHRE A B B % . 100084
i & #l. 010-62770175 HB . 010-62786544
BRE5EERS . 010-62776969, c-service@ tup. tsinghua. edu, cn
FRFE#H: 010-62772015, zhiliang@ tup. tsinghua. edu. cn
RBYT#H: http://www. tup. com. cn,010-62795954
& AL EFEEERIA RA R
. 2EBEHE
Z . 185mm X 260mm El %. 28.25 = ¥ . 686 TF
W 20154 6 A% 1A ED . 2015 4F 6 H 5L KERR
. 1~2000
#t: 59.00 55

iSRS 059734-01

Preface

The Chinese edition of this book is firstly published in 1999, the second edition is
published in 2001, the third edition is published in 2003, and the fourth edition is
published in 2010. This English edition is based on the former Chinese editions, which the
author took advice widely from readers and colleagues, consulted the latest material and
based on his teaching experience to complete,

1. Background of Writing This Book

C++ is an object-oriented programming language, which is evolved from C. C++ has
two main characteristics; one is its full compatibility with C and the other is that it
supports object-oriented methods.

The object-oriented program design encapsulates data and related operations together
to form an interdependent and indivisible whole-object. By abstracting common features of
objects of the same category, we can get class. Most data in a class can only be processed
by the methods encapsulated in the class. A class communicates with the outside world
through a simple external interface, and objects communicate with each other through
messages, In this way, we can have simple relationships among program modules, and
module independency and data security can be ensured. Meanwhile, through inheritance
and polymorphism, codes can be well reused, which facilitates both development and
maintenance of software,

Because of the outstanding qualities of object-oriented methods, they have now
become the major ways to develop large-scale software, and C++ is one of the most widely
used object-oriented programming languages.

C++ has long been considered hard to use, and is seldom used as an introduction
language to teach. Are C++ and object-oriented program design indeed hard to learn? The
answer is no. In fact, when C was firstly created, it was only used by a few professional
developers. However, along with the development of computer science, computer
technologies have permeated to researches and applications of different subjects. Now C
has been widely used by various engineers and technicians, and it has also been used as the
introduction programming language in many schools. C++ is fully compatible with C,
while it provides stricter and more secure grammars. In this sense, C++ firstly is a better C.

C++ is an Object-Oriented Programming (OOP) language. OOP has once been
considered as a comparatively advanced technology. This is because that before the
theories of Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD) came up,
to write a good object-oriented program, programmers should firstly learn to use object-

oriented methods to understand and describe problems. Now, since the works of

«1I-

understanding problem domains and designing system components have been done during
the phases of system analysis and system design, the work of OOP becomes much easier—
it is just to write every component of an OOD model by an object-oriented programming
language.

The emergence of object-oriented methods is in fact a process that the program design
gets back to the roots. Essentially, software development is to correctly understand
problems that the software needs to handle and to accurately describe the understandings.
The fundamental principle that object-oriented methods emphasize is to develop software
directly facing the objective existence, and to apply the ways of human thinking and
human expressions to software development. Thus, software development can return back
to the real world from the past methods, rules and skills that are extravagantly
specialized.

v Then, do we need to learn C before learning C++ ? No. Although C++ is evolved
from C, C++ itself is an integral programming language, and it has a completely different
design philosophy with C. Our learning course needs not to exactly follow the development
course of science technology. Only by mastering the latest theories and technologies
quickly can we stand on giant’s shoulders.

Thus, we think that C++ can be used as an introduction programming language to learn.

2. Features of This Book

This book is comprehensive, tries to explain problems in simple terms, and has
abundant complementary materials.

This book is for programmer beginners. Since the publication of the first editionis in
1999, the book has been used by different majors in many universities including Tsinghua
University, and has got good effects.

Using C++ as the introduction programming language for college students, this book
not only details the language itself, but also introduces data structures, algorithms,
object-oriented design ideas, programming, and the Unified Modeling Language (UML),
In each chapter of this book, we firstly introduce the related object-oriented programming
ideas and methods, and then expound the necessary grammar through practical examples,
explaining its meaning and usage primarily from the aspect of the programming
methodology. The purpose of this book is to make readers be able not only to master the
C++ language itself, but also to use computer languages to describe simple practical
problems and their solutions. However, to describe complex problems, readers still have
to learn other object-oriented courses such as object-oriented software engineering.

As a book for programmer beginners, this book aims at explaining complicated
subjects in simple terms.

3. Content Abstract

Chapter 1 Introduction

From a development perspective, this chapter firstly introduces the history and the

lHl

characteristics of object-oriented programming language, as well as the origin and the
primary basic concepts of object-oriented methods. Then it makes a brief introduction on
object-oriented software engineering. Finally, the chapter takes a look at how information
is represented and stored in computers and the development procedure of programs.

Chapter 2 Elementary C++ Programming

This chapter focuses on the basic knowledge of C ++ programming. It firstly
introduces the history and the characteristics of the C++ language, then it discusses the
basic elements that construct a C++ statement—character sets, keywords, identifiers, and
operators etc. The chapter also introduces basic data types and user-defined data types in
C++, and three main control structures in algorithms: sequential, case and loop
structures.

Chapter 3 Functions

This chapter focuses on the functions in C ++. In object-oriented programming,
function is the basic unit of module division, the basic abstract unit of problem-solving
processes, and also the abstract of functionalities. Using functions offers support for code
reuse. From an application perspective, this chapter mainly introduces the definitions and
usages of various functions, especially the usages of system functions.

Chapter 4 Class and Object

This chapter firstly introduces the basic idea of object-oriented program design and its
main characteristics: abstraction, encapsulation, inheritance and polymorphism. Then,
revolving around encapsulation, the chapter focuses on the core concept of object-oriented
methods—class, including the definition and the implementation of class, and how to use
class to solve practical problems. Finally, it briefly introduces how to use Unified
Modeling Language (UML) to describe the characteristics of class. Later chapters will
always use UML to describe the relationships between class and object.

Chapter 5 Data Sharing and Protecting

This chapter introduces the scope and the visibility of identifiers, and the lifetime of
variables and objects. We can see how to use local variables, global variables, data
members of classes, static members of classes, and friends to achieve data sharing and
protection of shared data. Finally, the chapter introduces how to use multifile structures
to organize and write programs to solve complex problems.

Chapter 6 Arrays, Pointers and Strings

This chapter focuses on arrays, pointers and strings. Array and pointer are the most
commonly used compound (structure) data types. They are the primary means by which
we organize and represent data and objects, and are the useful tools to manipulate math
operations. This chapter firstly introduces the basic concepts of arrays and pointers, and
discusses the dynamic memory allocation. Then, revolving around the organization issues
of data and objects, the chapter focuses on how to use arrays and pointers to link and

coordinate data, functions and objects. Finally, the chapter introduces the concept of

< -

string and two methods to process strings: using character arrays and using the class
string.

Chapter 7 Inheritance and Derivation

This chapter focuses on the inheritance characteristic of class. Revolving around the
derivation process, the chapter primarily discusses the access control issues of base class
members under different inheritance modes, as well as how to add constructor and
destructor in a derived class. Then, the chapter discusses the issues of unique
identification and access of class members in comparatively complex inheritance relations.
Finally, the chapter gives two instances of class inheritance—*“Use Complete Gaussian
Pivoting Elimination Method to Solve Linear Equations” and “Personnel Information
Management Program for a Small Company”.

Chapter 8 Polymorphism

This chapter introduces another important characteristic of class—polymorphism.
Polymorphism refers to that a same message can result in different actions when received
by different kinds of objects. Polymorphism is a re-abstract of specific function members
of a class, C ++ supports many forms of polymorphism, and the main forms include
overloading (include function overloading and operator overloading) and virtual functions,
which are also the learning focus. Finally, the chapter gives two instances of class
polymorphism—* Variable-Step Trapezoid Integral Algorithm” and “Improvement of
Personnel Information Management Program for a Small Company”.

Chapter 9 Collections and the Organization of Collection Data

A collection refers to a set of data elements, Collections can be divided into two main
categories: linear collections and non-linear collections. This chapter mainly introduces
some commonly used collection class templates.

The organization issues of collection data refers to the sorting and the searching
methods of the data elements in a collection. Sorting is also called classification or
reorganization. It is a process of making an unordered array ordered. Searching is the
process of finding specific data elements in an array by some specific method.

Chapter 10 Generic Programming and Standard Template Library

Generic Programming is to write programs as general as possible without loss of
efficiency. This chapter briefly introduces some concepts and terms that C ++ Standard
Template Library (STL) involves, as well as the structure of STL and the usage of its
primary components., We focus on the basic applications of containers, iterators,
algorithms and function objects, in order to give readers a conceptual understanding of
STL and generic programming.

Chapter 11 1/0 Stream Library and Input/QOutput

This chapter introduces the concept of stream, as well as the structure and usage of
the stream library. Like C, there is no Input/QOutput statement in C++. However, the
compiler of C ++ has an object-oriented I/0O software packet which is the I/O stream

o IV -

library.

Chapter 12 Exception Handling

This chapter focuses on the exception handling. Exception is a kind of program-
defined errors. In C++ , exception handling refers to a set of implementation mechanisms
that handles predicted errors in the run-time of programs. Try, throw and catch
statements are the mechanisms in C++ to implement exception handling. With exception
handling of C++ , programs can deliver unexpected events to execution contexts of higher
levels, and thus to better recover from these exceptions.

4. User’s Guide and Related Resources

The author assigns 32 class hours for teaching with this book, 32 class hours for
experiments, and 32 class hours for computer practices outside class. Thus, there are 96
class hours in and out of class, and each class hour has 45 minutes. We recommend
distributing the teaching hours as follows:

Chapter 1: 2 class hours; Chapter 2: 4 class hours; Chapter 3: 2 class hours; Chapter
4. 4 class hours; Chapter 5: 2 class hours; Chapter 6: 4 class hours; Chapter 7. 4 class
hours; Chapter 8: 2 class hours; Chapter 9: 4 class hours; Chapter 10: 2 class hours;
Chapter 11: 1 class hour; Chapter 12: 1 class hour,

The readers can download the learning resources from the Tsinghua University Press
Web site.

5. Acknowledgement

In the Chinese version of this book, Chapters 1 ~3, 9, 11 and 12 are written by
Zheng Li; Chapters 4 ~ 8 are written by Dong Yuan, Zheng Li and Zhang Ruifeng;
Chapter 10 is written by Zhang Ruifeng and Zheng Li. Yang Fang rewrite the book in
English based on the Chinese version. Besides, Zhou Zhiwei, Dai Nike, Wang Jing, Shan
Liang, Mai Haohui, Liu Yintao, Xu Chen, Fu Shixing, Tian Rongpai, Meng Hongli,
Meng Wei, Zhang Wenju, Yang Xingpeng and Wang Xuan participated in parts of the

writing work.

Thanks readers for using this book, any criticisms and suggestions are warmly
welcomed. With your reply please specify your e-mail address. The email addresses of the

author is: zhengli@tsinghua. edu. cn.

Chapter 1
1.1

1.2

1.3

1.4

1.5

s e s L L e It P

Chapter 2 Elemenmry Ct++ Programming B sEe aen BEs RN SEe sasSNeseseessus seN s samuse urE e

2:1

Contents

Intrmiuction seeesises esn sen sus e snn sRs RO NNS RS Ass ete AR E Res aun B e
The Development of Computer Programming Language -

1.1.1 Machine Language and Assembly Language ««r-sreeermvenmesiiinninn.

1.1.2 High-level Language
1.1.3 Object-oriented Language
Object~0riented Method T T LT T T Ry S,y appope

1.2.1 The Origin of Object-oriented Method ++==-++--+-+-
1.2.2 Basic Concepts of Object-oriented ¢+ »evrsivvanssesansassonssion

Objectworiented Software Development B)

1- 3‘1 Analysis Ll A L A
1.3.2 Design seereeeensesnecomisesunnsmennsinisnsnnnes

1_ 3_3 Programming D I

1.3.4 Test
1.3.5 Maintenance rerecereee
Representation and Storage of Information

.4.1 Digital System of Computer sr=resssererirasenes

.4.3 Storage Units of Information =e-serrreeress

.4.4 Binary-coded Representation

Pt e e e e ek

.4.7 Representation of Non-numerical Information

e

.4.2 Conversions among Numeral Systems ==+s+rseresevmesess

B)

.4.5 Fixed Point Number and Floating Point Number -«+rorseerrisnirenean
.4.6 The Number Range That Can Be Represented -:-

frssrRasr e e

The Development Process of Programs — «sseeseeeaerisinnn

1. 5.1 Elementary Terms R)

1.5.2 The Development Process «=s«sssseeesussmssesisiismnioiiimsmnnmis s sen v

An Overview Of C++ Language R
2' 1. 1 Orlgins of C++ e S e s B Ee e N RS ESe AN S TAs e SRS RIS ERST ST ST SRR RS SRR RES SR
2. 1. 2 Characteristics of C++ R R R T T T

2‘ 1' 3 C++ Programming Examples 600055 TESOED NS H0H AN OGNS 505,90 FHSTES U

2.1.4 Character Set
2.1.5 Lexical Tokens

Pt pd b

O 00 00 NN N N N o O e o w NN

o T
N W w O

L
TN NN NN NN NN DN DN
D OB B W W W N - O O O ©W 0

2.2 Basic Data Types and Expressions

2.2.1
2.2.2
2.2.3
2.2.4
225
2.2.6

Basic Data Types

Constants B R RN S AR R E S SR RS RS RN R R RN NS R R e R R R SO e SR RS SRR A R e P R

Variables smsrsssssmsosesnanomen ssmmusgasie
Symbol Constants B N)
Operators and Expressions

Statement

2_ 3 Data Input and Output T

2.3.1
2,3, 2
2.3.3

I/O Stream B R)

Predefined Input and Output Operator

Simple I/O Format Control § 88 R E0E NI 000 EEEPEs SEeResSEs e RIe PSS Hes b en BES

2.4 The Fundamental Control Structures of Algorithms -«

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

2. 5 User_Defined Data Type B I

2.5.1
20502
2.9.38
2.5.4

Summary -+

Exercises -----

Achieving Case Structure Using i f Statement

Multlple Selection Structure D

Loop Structure B R I

Nestings of Loop Structure and Case Structure

Other Control Statements -

typedef Declaration FAE RS E AN RE R AR R SAA EAE SN AR R A AR FER AR R e Nes EE A

Enumeration Type—enum

Structure I)

AT O T o i s a6 Facoimagh s L g piapasyinn 5 s i AR i o

DI I R R

B T R R)

Chapter 3 FUNCLIONS revvrvsresssessrasaiesnssnsostaasssiatiornsessosas

3.1 Definition-and Use10f FRnCtion . re«isusre tovsseven ssomsahmenesie

B
3.1.2
3.1.3

Definition of FUTCHOm: | evssspermmeisvuns snasssonsantapyenesssesssqs soa

Function Calls B T R I

Passing Parameters between Functions -er-es-eeeees

3. 2 Inline Functions B

3.3 Default Formal Parameters in Functions

3.4 Function Overloading

3.5 Using C++ System Functions

Summary ---

Exercises

B T

Chapter 4 Class and Object ---vooreevenees
4.1 Basic Features of Object-Oriented Design

4. 1.1

ADSEtractiOn seesesssesrersesnesarsansntorrrassosonesssnsanerssiones

4. 1.2 Encapsulati()n B N

<V -

- 28
- 29

30

vex, 32
« 33
- 34
- 43
- 44
© 44
- 44

45

- 46
- 47
oo 48
« 51
« 57

+ 60
)
- 60
- 62
« 65
“ 67
- 68
« 72
s 2
o 79
- 73
- 86
- 90

e 92

- 94
dasna 17
s 9Q

- 100
- 102
- 102

- 102

-« 103

4,1.3 Inheritance
4,1.4 Polymorphism

4.2 Class and Object tssarssenneasonerns
4,2.1 Definition of Class

4.2.2 Access Control to Class Members «sreeeereeees
4,2.3 Member Function of Class -

4,2.4 Object

4.2.5 Program Instance -

4.3 Constructor and Destructor cssese-
4.3.1 Class Constructor s=s«ssveees

4, 3.2 The Copy Constructor s sswsssses fissssseisssammasasison var

4. 3.3 Class Destructor

4.3.4 Program Instance s+« ssssesssermenimmemnmmn i e

4.4 Combination of Classes =+ssteaessrsmminninninnieiinnaes,

4.4.1 Combination -+

4.4.2 Forward Declaration
4.5 UML

4.5.1 Brief Introduction of UMIL «teesrtiearatatmiiiniimeai e inennsninn,

4.5.2 UML Class Diagrams «s««ssssseesessanisssmmimmmn s e
4.6 Program Instance—Personnel Information Management Program «++=«+«-

4.6.1 Design of Class »++ssvseeasinmssinmmeriniiis

4.6.2 Source Code and DesSCription «e«s++sssssserssussrssesnitasinniteniuens

4,6.3 Running Result and Analyses

Summary
Exercises

Chapter 5 Data Sharing and Protecting

5.1 Scope and Visibility of Identifiers
B. 1.1 SCOPE +wresreesvnsnnnusereinsvutunssiesesstebrs e ses e bae as s e seese s as e s

5.1.2 Visibility
5.2 Lifetime of Object =reesesaeeciine
5.2.1 Static Lifetime <«sseeeves

5.2.2 Dynamic Lifetime «eceerseecneres

5.3 Static Members of Class

5.3.1 Static Data Member =« cereeroniecinan
5.3.2 Static Function Member -

5.4 Friend of Class
5.4.1 Friend Function
5.4.2 Friend Class ---

5.5 Protection of Shared Data -+-+:

<+ 104
e 104
«+ 105
- 106

soexd 0T

- 108
-- 110
- 111
» 112
s 112
* 115
«119
- 120
-« 121
+ 122
« 126
e 128
128
129
« 135
- 135
- 136
- 138
vl 138
« 139
- 141
- 141
141
-+ 143
« 144
+ 144
- 144
- 147
- 148
+ 150
wee 152
- 154
v 156
- 157

5.5.1
9.5.2
9.5.3

Constant Reference R R

Constant Object B N
Class Members Modified by comst «++=ssseessunsssmssnsmssssnssesvaenunnes
+ 161

5.6 Multi-file Structure and Compilation Preprocessing Directives

5. 6,1
5.6.2
5.6.3
5.6.4

5.7 Example—Personnel Information Management Program «««seeresesrincenan.

Summary

Exercises

General Organization Structure of C++ Program ««tceceereeseirannan.
External Variable and External Function «rererserervreaimnaiinn.
Standard C++ Library and Namespace Abs s saeses st asaEen T abs b hny

Compilation Preproeessing D R)

Chapter 6 Arrays, Pointers and Strings -«--cccevececiiininn

6.1 Arrays -

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

Declaration and Use Of Arrays R

Storage and Initialization of Arrays

Using Arrays as Function Parameters

Object Arrays I L T

Program Examples B I T Y

6.2 Pointers D e I IR I

6.2, 1
6. 2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11

Access Method of Memory Space -

Declaration of Pointer Variables

Operations Related to Addresses—* * 7 and ‘&7 «voevrmenniiine

ASSignment Of Pointers cstesccreessnicnciasanarssscnns

Pointer Operations B)

Using Pointers to Process Array Elements «:crorecerereesian ...

Pointer Arrays B I R)

Using Pointers as Function Parameters

Functions Of Pointer Type I I
Pointers. that Point to Functions --<s=ss<sevges soajsascasisnacssans sas

Object Pointers B I

6.3 Dynamic Memory Allocation ceceeeeeerseeens

6.3.1
6.3.2

6. 4 Deep Copy and Shallow‘ Copy R T I
6.5 Strings «eeeeeeeessesssnrssesmssamsassieeane oo

6.5.1
6. 5.2

6.6 Program Example—Personnel Information Management Program «-««---

Summary

< X -

new Operation and delete Operation ««r-s--eseereraneeees

Dynamic Memory Allocation and Release Functions

Using Character Arrays to Store and Process Strings

The string Classg srecssrsesscerssarossnsscsnssassnnessrssns

T I T I Y

B R T R

s nemn

+ 157
- 158

159

161
164
165
166
170

- 174
- 174
< 176
- 176
v 177
- 179
= 181

183

- 185
- 189
-+ 189
- 190
ves 191
= 192
ceer 195

196

o+ 198
.« 200
- 202

- 203

205

- 211
-~ 211
/s 216

216

-~ 220
- 221
- 223
- 226
- 230

Exercises - 231
Chapter 7 Inheritance and Derivation - - 234
7.1 Inheritance and Derivation of Class -+ - 234
7.1.1 Instances of Inheritance and Derivation - 234
7.1.2 Definition of Derived Class -+-+-+---- - 236
7.1.3 The Generation Process of Derived Class -+ - 238
7.2 Access Control - 240
7.2.1 Public Inheritance seese 240
7.2.2 Private Inheritance - 243
7.2.3 Protected Inheritance - 245
7.3 Type Compatible Rule - 247
.4 Constructor and Destructor of Derived Class ==+:+=eeresee - 250
7.4.1 Constructor - 251
7.4.2 Copy CONSIIUCLOT +»+eesseesnsenennsarnnnsnsssns s 254
2 A B D OGO dvemise cinfudnlaiipin coswanmn . 255
7.5 Identification and Access of Derived-Class Member «--=-:-ccceenees - 257
7.5.1 Scope Resolution «rerrereeseeraeee - 257
7.5.2 Virtual Base Class - 263
7.5.3 Constructors of Virtual Base Class and Derived Class «wesseeeereeee 266

7.6 Program Example: Solving Linear Equations by Gaussian Elimination
Method - 267
7.6.1 Fundamental Principles - 268
7.6.2 Analysis of the Program Design e 269
7.6.3 Source Code and Explanation «««s«sssesssseersmreonsmsnemsinnannis . 269
7.6.4 Execution Result and Analysis - 275
7.7 Program Example: Personnel Information Management Program :-----+-++-+ 276
7.7.1 Problem Description - 276
7.7.2 Class Design resereress - 276
7.7.3 Source Code and Explanation +++rere+ - 276
7.7.4 Running Result and Analysis so=rererrrresrrrneenens - 282
Summary - 283
Exercises - 284
Chapter 8 Polymorphism + 286
8.1 An Overview of polymorphism -~ 286
8.1.1 Types of Polymorphism «e«eseesveranismimmnmmiuniiisneniieineasnnaenaes 286
8.1.2 Implementation of Polymorphism «::eeeeereeneeens - 287
8.2 Operator Overload ++eevvevee - 287
8.2.1 Rules of Operator Overload - 288
8.2.2 Operator Overloaded as Member Function e 289

8.3

8.4

8.5

8.6

Summary B I T I
Exercises B I I I

Chapter 9 Co“ections and Their Organization B A o e e

9,1

9.2

9.3

9.4

8.2.3 Operator Overloaded as Friend Function «e:eeeseeees

Virtiral o atiotion oo fee e s o i s O O S datriscsar] b e s 63 . 18 59 5 48 8 AR S5

8.3.1 Ordinary Virtual Function Member

8.3.2 Virtual DeStructOr serereeessstresmmtetaicieneatueesaasecrennsssnasse

Abstract Class

8. 4. 1 Pure Vlrtual Functlon D T I

8.4.2 Abstract Class

Program Instance; Variable Stepwise Trapezoid Method to Calculate

Functional Definite Inlegral P A RS AT R EER RS EEE EN A AR R S AR RS E G FEE RS PR e A

8.5.1 Basic Principle «eeseeeremimmmmii i

8_ 5_ 2 Analysis of Program Design B L I
8. 5. 3 Source Code and Explanation B I I I

8.5.4 Execution Result and Analysis

Program Instance: Improvement to Staff Information Management

System in a Small Corporation I R

Function Template and Class Template «+seeeeveraimmiiianiiian

9. 1. 1 Function Template B R)
9_ 1. 2 ClaSS Template D R

Linear Collection I]

9.2 1 Delinition of Linear Collection s ew s cassescse oss shoessns sxbuns sxsass
9.2.2 Direct Accessible Linear Collection—Array «====ccerrrenermecenniienin.
9.2.3 Sequential Access Collection—Linked List <eereeceereececmmecsicnne

9.2.4 Stack cerreccrreeretiiitiiiiii it er it ere i see e e i s
8.2, 5 T Onetes Bkt Rrelendl (ISR WA

Organizing Data in Linear Collection «s«sseeesrmeareiinatiniiiiiaiii.

0. 3.1 T TNSETEION SOITt oo tosions aneods ansioss sneisss sweisor Sisson swsmss i o ousdedndonvanye
G.3.2 Selection SOFt e« rsessssbssissdednsbivesehaiosansvesssddicevinennnsonsons
9.3.3 Exchange SOrt «s:eeeeeesreesiiemmaiiiium i,
9.3.4 Sequential Search «esseseeereeimeniniiiii e
9.3.5 Binary Search seseeessesetiimiiiiiiii i e s

Application—Improving the HR Management Program of a Small

Company D I

SUMMALY ce+teses e ssnenncnthaesmiensssnensnsnntensenees s sessns sansannnssns sas s vons

EXCrCISes’ ++» ssossn ssvavaansus s ks norasiavdy sl ons bustis desis

Chapter 10 Generic Programming and STL I A

10.1

« Xl -

Geﬂeric Programming Sesuis vaians BER BTN R e ¢
10. 1.1 Introductlon e as s ses s asises cdenas s intbe st nte vendue b iy

- 294
+ 296
¢ 297
- 300
- 301
s 302
s 302

304

- 304

306

- 307
- 310

s+ 210

316
317

« 319
- 320

320
323

- 326

326
328
337

. 343
- 349
o 352

352

- 353
= 355

356
357

= 358
== 359
- 360
- 362
- 362
- 362

10. 2

10. 3

10. 4

10. 5
10. 6

10. 1- 2 Namespace B L

10. 1. 3 Differences of Naming Conventions between C/C++ e-cereeeincnn

10. 1.4 - Concepts of STL cecsecvuscsessssrrsuisnnas
Containers in STL

10. 2.1 Sequential Container

10. 2.2 Adapters of Containers

TREEALOLS ==« oo ove sossos soopes samares

10.3.1 Types of Iterators

10, 3.2 Auxiliary Functions in Iterators
Algorithms in STL

10.4.1 Using the Algorithms -+

10.4.2 Non-Mutating Sequence Algorithms -+
10. 4.3 Mutating Sequence Algorithms -
10.4.4 Sorting Related Algorithms

10.4.5 Numerical Algorithms ««eseeeees
Function Objects «+ree==e=+
Application—Improving the HR Management

Program of a Small Company «+«==«ereve-+

Summary

Exercises

Chapter 11 The 1/0 Stream Library and Input/Qutput <+« -«-coeoeeesenemmninsineaneen.

11.1
11.2

11.3

11.4
11.5

I/O Stream’s Concept and the Structure of Stream Library -
Output Stream «---e-«eeseeees

11. 2.1 Construct Qutput Object ==++e+ ==

11.2.2 The Use of Inserter and Manipulator

11. 2.3 Output File Stream Member Function =-+++

11. 2.4 Binary Output File

Input Stream -« ««-eeeeeeeeeane

11. 3.1 Construct Inpuf Stream Object

11. 3.2 Extraction Operator ==+

11. 3.3 Input Stream Manipulator

11.3.4 Input Stream Member Function «=r-r-coemmereeeeens
Input/Output Stream

Example—Improve Employee Information Management System -«--+-«-----

Summary

Exercises

Chapter 12 Exception Handling

12.1
12.2

Basic Concepts of Exception Handling -=««ssseeerreeemececenne

The Implementation of Exception Handling in CH++ +ereeeemervenanne

«es 363
364
b 365
- 367
wsr 367
« 375
« 377
378
« 379
- 381
-+ 381
-+ 383
- 385
- 389
« 393
- 394

12.2.1 The Syntax of Exception Handling
12.2.2 Exception Interface Declaration «««-eeeeeeceenee
12.3 Destruction and Construction in Exception Handling ==-«trerreemeeieninianen
12.4 Exception Handling of Standard Library -«-ecoreeveecrmenemnne..
12.5 Program Example—Improvement to Personal Information Administration
Program in a Small Company ==«+-+«-+
Summary
Exercises

- 424
- 427

427

- 430

-+ 431
- 433
- 433

Chapter 1 Introduction

This chapter briefly introduces the history and characteristics of object-oriented pro-
gramming languages, the origin of object-oriented method and its basic concepts, and the
definition of Object-Oriented Software-Engineering. Besides, we will introduce how infor-

mation is represented and stored in a computer and the development process of a program.

1.1 The Development of Computer Programming Language

Language is a system with a set of grammatical and morphological rules. Language is a
tool for thinking and the thoughts are expressed by languages. Computer programming lan-
guage is a language that can be recognized by computers. It describes solutions to problems,

which can be read and executed by computers.
1.1.1 Machine Language and Assembly Language

Since the birth of the first digital computer in the world—ENIAC, in February 1946,
computer science has developed rapidly in the past 60+ years. Computer and its applica-
tions have penetrated into various areas of the society, effectively promoting the develop-
ment of the whole information society, wherein computer has become an essential tool.

Computer System consists of software and hardware. It is not only the strong hard-
ware but also the software system that makes computer system so powerful. The software
system consists of all the programs a computer needs for running and relevant documents.
The work of computer is controlled by programs, and computer can do nothing without a
program. A program is a set of instructions. Software engineers translate their solutions
to problems and their procedures into a series of instructions, which make up of programs,
and input these programs into the computer storage system. The computer executes the
instruction sequence to complete the scheduled task.

The so-called instructions are commands that can be recognized by computers. We know
that every ethnic group has rich languages for expression, communication and recordation,
while these languages are difficult for computer to recognize. The only instruction type
that computer can recognize is simple combinations of Os and 1s. The set of instructions that
can be recognized by the hardware system of a computer is called the instruction system.

All binary instructions that can be recognized by the hardware system constitute the ma-
chine language, Undoubtedly, though machine language is easy for computer to recognize,
it is too obscure for human beings to understand, let alone to remember. However, in the
early years of computers software engineers can only use machine language to write pro-

.1.

