


© BE fmE

7
http://www.hustp.com

FE - ®X



n&EE N

APEBENRT Ito BUARREFEILB A J5 12 . 6015 o i BE DL 43 75 72 0 ob ST RY B AL B 4y O 7R Y B A 3
B RATHE T AELERAHL 6 40 77 8 B9 R 1 A8 1 R ST Oy ok i e Stk e BB 4 . b, AR BT
LRI T AT R [ A PR 2 PR BEAL B0 07 R BT T LR .

A AR 1E 8 2 BE A AR R ARLAE (BRIT A B BB, R AL BUM A9 S L WA S BF 5T AR R BB AL
i 43 77 A2 0O B B 1R 3 R R R

BB ERS B (CIP) #1&

R £ M FE P 4r )5 #2 = Nonlinear Stochastic differential equations: % 3 /J& A i 4 . — I . £ FlH
K2 Rt . 2014. 7

ISBN 978-7-5680-0223-3

[. @3- M.OR”- 1. OFLE-FEILHBSTE-#M-KX V. D0211.63

op B A B B CIP a4 5 (2014) 85 155192 &

LM TR

Nonlinear Stochastic Differential Equations

A VK HFE

TRl & B

o (L i . BRI

i x I

TR O E

TR ED . BRIEAR

AR A AT« B B R At (R E - DO

K E MR L MR 2 . 430074 Bi% . (027)81321915

B HE: BRI Tk LU X AR AR SCENER

Efl il S 3BT R ER R

JF A, 787mm X 1092mm  1/16

Efl . 20.5 $ET.2

FoOM 536 TF

i K 2014 4F 8 55 1 AEE 1 WK ED R
E it : 59. 80 76

A5 25 A7 D SRk 1] B, 37 1 AR AR B R0 R
4o [ 5 TR 5 TR . 400-6679-118 B iRt b B3 IR %
Frem BALTA R



Preface

Nonlinear stochastic system has come to play an important role in many branches of
science and industry., More and more researches have involved nonlinear stochastic
differential equations. Recently, many research efforts have been devoted to deal with
nonlinear stochastic differential systems. Many papers on them were published in different
journals,which is not convenient for readers to understand the theory systematically. This
book is therefore written. The main aim of this book is to explore systematically all various
of nonlinear stochastic differential systems. Some important features of this text are as
follows:

The text will be the first systematic presentation of the basic principles of various
types of nonlinear stochastic systems,including stochastic differential equations, stochastic
functional differential equations, stochastic equations of neutral type. It will emphasize the
current research trends in the field of nonlinear systems at an advanced level,in which the
local Lipschitz and one-sided polynomial growth conditions will replace the classical
uniform Lipschitz and linear growth conditions.

This text emphasizes the analysis of stability which is vital in the automatic control of
stochastic systems. The Lyapunov method can be adopted to study all various of stable
properties of stochastic systems. Especially, this text demonstrates that the Khasminskii-
type criteria on stability is very effective for highly nonlinear stochastic systems with
delay.

The text explains systematically the use of the Razumikhin technique in the study of
exponential stability for stochastic functional differential equations and functional
equations of neutral-type with finite or infinite delays as well as stability of the discrete
Euler-Maruyama approximate solution.

The text will be the first systematic presentation of the basic theory of nonlinear
stochastic functional differential equations with infinite delays. It discusses the existence
and exponential stability of stochastic functional differential equations on special and
general measure spaces.

The text demonstrates systematically the stabilization of nonlinear deterministic
system. It indicates a nonlinear Brownian noise feedback to suppress the potential
explosion of the system,and a linear Brownian noise feedback to stabilize exponentially this
system.

This text discusses new developments of the Euler-Maruyama approximation schemes

under the local and one-sided Lipschitz conditions as well as one-sided polynomial growth



Nonlinear Stochastic Differential Equations

condition. This text studies linear stability of the Euler-Maruyama approximate schemes
and nonlinear stability of the backward Euler-Maruyama approximate schemes. The
advantage of the backward Euler-Maruyama approximate schemes is that the approximate
solution converges to the accurate solution under the local Lipschitz and one-sided
polynomial growth conditions.

This text is mainly based on the papers of Professor Fuke Wu and Professor Xuerong
Mao as well as some recent research papers,for example, Wu and Hu (2009a) , Wu and Hu
(2010a,b) ,Wu,Hu and Mao(2011), Wu and Hu(2011e), Mao and Szpruch(2012), Mao
and Szpruch(2013), Zhou and Xie(2014),Zhou(2014a),Zhou(2014b). It hence discusses
many hot topics including the discrete Razumikhin-type theorem, numerical convergence
and stability,population dynamics and stochastic stabilization.

The text is suitable for advanced undergraduate students, graduate students and
teachers in colleges and universities as well as research workers involving stochastic
dynamic systems.

I have to thank Professor Shigeng Hu for his constant support and kind assistance and
encouragement, | have to thank Professor Fuke Wu, who has provided me a great deal of
material during the writing process,for his support and help. I also wish to thank Ph. D.
Yangzi Hu for her support and encouragement. Moreover, I should thank my family for
their constant support and understanding.

I also would like to thank the Teaching Material Foundation of HUST, the National
Natural Science Foundation of China (Grant No. 11301198 and 11422110) as well as
National Excellent Young Foundation of China (61473125) for their financial supports.



General Notation

positive ; >0

non-positive : <0

negative: <0

non-negative; =0

a. s. : almost surely or ¥ -almost surely or with probability one
a(t)=b(t) :a(t) and (1) are identically equal, 1. e. a(t)=0b(t) for all ¢
& : the empty set

I, : the indicator function of a set A, i.e. I,(x)=1 if x€ A,otherwise 0
A" : the complement of A in 2, i.e. AA=02—A

ACB. A is a subset of B, i.e. ANB =J

ACBa.s.: P(ANB)>=0

o(C); the g-algebra generated by C

aV b; the maximum of a and b

aAb: the minimum of a and 6

f:A—>B: the mapping f from A to B

o

S:={1,2,++,N}, the finite state space of a Markov chain
R =R"'.; the real line

R . : [0,00), the set of all non-negative real numbers

=

R

: the d-dimensional Euclidean space

R4 : {(xysxpernx)ERY s ,>0,1<0d}
F:o-algebra

F,:0-algebra filtration

F. =a([L>JF,)

B“. the Borel-g-algebra on & ¢

E, —R!

R %", the space of real d X m-matrices

RdXm dxm

: the Borel-g-algebra on &
Z ={(a;)axa ER " ;a;<<0,i#j}

| x| : the Euclidean norm of a vector x
Sy:={xER*:|x|<h)}
Si:={x€R":|x|<h}

A", the transpose of a vector or matrix A

A=A". A is a symmetric matrix



Nonlinear Stochastic Differential Equations

A=AT0:.A is a symmetric positive-definite matrix
A=ATZ>0: A is a symmetric non-negative-definite matrix
AZ=0: each element of A is non-negative

A>0: A=0 and at least one element of A is positive
A>>0: all elements of A are positive

A=A, : if and only if A, —A,>0

A, >A,; if and only if A, —A,>0

A, >A,: if and only if A, —A,>0

(x,y): the inner product of vectors x and y, namely (x,y)=x"y

tr(A) : the trace of a square matrix A = (a;; ) xu 1. €. tr(A) = Za,,
1<i<n

Amin (A) ; the smallest eigenvalue of a symmetric matrix A
Amax (A) ¢ the largest eigenvalue of a symmetric matrix A
Al (A) =sup,e:d#,!,|:.xT Ax for a symmetric matrix A
A(A): the spectrum of A

pCA) ; the spectrum radius of A

|Al: |A|= /tr(ATA) i.e. the trace norm of A

lAll:ll Al =sup{lAx| : |x|=1}= /Auc(ATA) i.e. the operator norm of A
8; : Dirac’s delta function, that is §; =1 if 7=j, otherwise 0

AV av 9V)

s L ]
811 (7.1'2 a.Td

V_r: sz(V.ll vV,z ’".’VIJ):(

Vi V“:(V‘,,,j dasa = ( ey )dxd

r)_T,a.l"j
I g | o :=(E l§|")‘“"
L*(Q;R“): the family of 2 “-valued random variables & with & [&|’<Cco

Lt (2;R %) : the family of R “-valued F,-measurable random variables § with £ [§[”<

C([—7,0];E“): the space of continuous F “-valued functions ¢ defined on [ —7,0]
with a norm | ¢ || =7§3’rp.ﬂl¢(0)|

LE([—7, 013 R %) s the family of C([—1z, 0]; R “)-valued random variables ¢ such
that E || @ || #<Too

Lt (L—17, 0]; R “): the family of F,-measurable C([ —z,0]; R 4)-valued random
variables @ such that E || @ || *<Too

Ck,([—7, 0]3R “): the family of F,-measurable bounded C([ —,0]; & “)-valued
random variables

L?*([a,b]; % ) the family of Borel measurable functions h:[a, 6]—F “ such that

b
J | k() |Pdt < oo
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(Lasb]: 74 the family of ® ¢ -valued F,-adapted processes { f(#)}.c.<; such that
b
J | £ |#dt << oo, s.

M*([a, 635 9); the family of processes { f(2)},<<p in *([a, b];R 4) such that

b

J | fCo) |Pdt < =0

Y (E ;7% the family of processes { f(2)} -, such that for every T>>0, {f(2) }i<<t
eL* ([0, T;ED

M? (2 . 35 “) . the family of processes { f(1)},~, such that for every T>>0, { f(¢) }y<,<
eM ([0, T];R"

W ([ —z, 0];E ) the family of all Borel measurable bounded non-negative functions
¢(s) defined on —z<{s<C 0 satisfying I‘ML’(C — s)ds = 1 for any constant ¢

W((—co,0];F . ): the family of all Borel measurable bounded non-negative functions
¢ (s) defined on —oo<Is<C0 such that J-i g(s)ds =1

GB((—0c0,0];E ) the family of bounded continuous R “-valued stochastic process &
={E(s), —oo<s< 0} with the norm | ¢ || =§}1<\1([)>|¢(5)|

K : the family of all continuous increasing functions «: F . —=R , such that x(0)=0
while (u) >0 for u=>0

K_ . the family of all functions k& K with property that g(cc)=co

K : the family of all convex functions k€ K

K, : the family of all concave functions k€ K

™

L'(E ,;E"): the family of functions y:® . —R . such that J Y (1)dt << oo

®(R ,;E ) : the family of functions ¢:F | =R ; such that Iﬁjgo(t)dt = oo

W(E . ;5 .): the family of all continuous functions ¢: 2 . ==X . such that for any §>

. i = e
0 and any increasing sequence {f; ), ZJ g()dt = oo

k=114
sign(x) : the sign function, namely,sign(z)=1 if x=0, otherwise —1

[]: The proof of theorem or lemma is complete
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1 Stochastic Integral

The well-known Lotka-Volterra models proposed by Lotka(1925) and Volterra(1926)
play an important role in ecological population theories. When two and more species live in
proximity and share the same basic requirements, they usually compete for common
resources including food, habitat or territory. A competitive LLotka-Volterra system with 4
species is described by

dz, () :
o =1‘;(t)|:b;—jz=;a.~,»r,~(t):l, i=1,2,,d, (1.1

where z;(¢) represents the population size of species 7 at time ¢, the constant b; is the
growth rate of species 7, and a; represents the effect of interspecific (if i % j) or
intraspecific( = j) interaction. The quotient &;/a; is the carrying capacity of the i-th
species in absence of other species. Eq. (1. 1) can also be written as

dfi(tt)=diag(:rl(t), x2 ()5 0y 2z Db —Az (D) ], e

where x=(xz,, x;,**, x,)" is a d-dimensional state vector, b=1(b,, by, ***, b,)7, A=
(a;)axa 1s a d Xd matrix, known as the community matrix, and z" denotes the transpose
of z.

Note that the parameter b; represents the intrinsic growth rate of species i. In
practice, it might happen that &; is not completely known but subject to some random
environment effects, so we usually estimate it by an average value plus an error which
follows a normal distribution. Let b, denote the average growth rate, then the intrinsic
growth rate becomes

b,— b;+o:“noise”.
So Eq. (1. 2) becomes

D — diag () (10, 22(1) s =y 2,0 [b—Ax(0) +6* noise”], $2l)

where 6= (g, 62, ***, 6,)". The integral form is

3 d t
z; () = z,(0) +I x;(s) I:b, o E a;,.z-,-(s):lds—["'[‘ o:x; (5)“noise”ds. (1. 4)
0 = 0

The questions are: What is the mathematical interpretation for the “noise” term and what

!
is the integrationf o:.x;(s)“noise”ds?
0
A reasonable mathematical interpretation for the “noise” term is the so-called white
noise w(t) , which is formally regarded as the derivative of a Brownian motion w(z), i. e.

w(t) =dw(z)/dt. So the term “noise”dt can be expressed as w(z)de=dw(z), and
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J’ o:x; (s)“noise”ds = J’ o:ix; (s)dw(s). (1.5
0 0

The question is: What is the integration-[ o:x;(s)dw(s) 7?7 If the Brownian motion w(¢) was
0
differentiable with its derivative w (¢) = dw (¢)/d¢, then the integral would have no
problem at all as it could be done as the classical Lebesgue integral Jla.-x,-(s)'cb(s)ds.
0

Unfortunately, we shall see that the Brownian motion w(¢) is nowhere differentiable,

hence the integral is different to the ordinary integration. On the other hand, if w(z) is a
process of finite variation, the integralJ o:x;(s)dw(s) could be regarded as the Lebesgue-
0

Stieltjes one. However, we shall see that almost every sample path of the Browian motion
has infinite variation in any finite time interval later. Hence the integral cannot be defined
in the ordinary way. The integral was first defined by K. It6 in 1949 and is now known as
the 1t6 stochastic integral.

To define this integration, we shall briefly review the basic concepts of probability
theory and stochastic processes. By the aid of these properties, we proceed to define the
Brownian motions and the stochastic integral and establish the well-known 1t6 formula
referring to Mao(1997) ,Klebaner(2008) , Hu, Huang and Wu(2008).

1.1 Variation

If f is a function of real variable, its variation over the interval [0, ¢] is defined by

VL0, = lim 37 | £ — fat) |,
I V=1

where the limit is taken over partitions; 0=t <t{<---<ti=t with g, = max (t; — ;).
1<e<<n

If fis a function of real variable, its quadratic variation over the interval [0, ¢] is
defined by

Lff1@ = [f, fI0,t]D) = lif})i | FG2) — £ |3,

where the limit is taken over partitions: 0=1¢,<¢{<---<t)=¢ with ¢, = max (¢ — ;).
1<k<n

If f and g are functions of real variable, their quadratic covariation over the interval
[0, ¢] is defined by

[fsg1(0) = lim >3 (f() — f())(ged) — g(#ia))s
In " k=1

where the limit is taken over partitions: 0=1¢, <t} <---<ti=t, with ¢, = max(z} — ;).
1<k<n

Quadratic variation and covariation play important role in stochastic calculus, but it
hardly ever meets in standard calculus due to the fact that smooth functions have zero

quadratic variation. That is, if f is continuous and of finite variation then its quadratic
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variation is zero. If f is continuous and g is of finite variation, then their quadratic

covariation is zero(see Klebaner(2008)).

1.2 Random Variable

1.2.1 Probability Space

The outcomes of a random experiment cannot be determined in advance. The set of all
possible outcomes is called the sample space 2 with typical element w € 2. A subset of a
sample space is said to be an event. Not every subset of (2 is in general an observable or
interesting event. So we only group these observable or interesting events together as a
family F of subsets of 2. A family F is said to be g-algebra if

(1) JEF, where & denotes the empty set;

(ii) AEF = A€ F, where A°=Q—A is the complement of A in Q;

GiD) {A: Y CF = L_J1 AEF (also Q A, E€F).

That is, a g-algebra is a collection of subsets of 2, which is closed with respect to
countable unions and countable intersections of its members. The pair (2,F) is called a
measurable space, and the elements of F are said to be F-measurable sets. If C is a family
of subsets of 2, there exists a smallest s-algebra ¢(C) on 2 which contains C. This ¢(C) is
called the c-algebra generated by C. B?=g(C) is said to be the Borel s-algebra if Q=R ¢
and C is the family of all open sets in R, and the elements of B? are called the Borel sets.

A real-valued function X # 2 — R is said to be F-measurable if

{w: X(w<z}EF, z€ER.
The function X is also called a real-valued ( F-measurable) random wariable. A is an
F-measurable set(i. e. A€ F) if and only if the indicator function I, is F-measurable,
where the indicator function I, of a set ACQ is defined by
B 1 for w€A,
W= for weA.
Theorem 1.1 (i) X is a random variable on (2, F) if and only if it is a simple

function or a limit of simple functions.

(i) If X,(n=1) are random variables on (2,F) and X(w)=1imX,(w), then X is a

n—co

random variable.

(iii) If X is a random variable on (2,F) and g is a B-measurable function, then g(X)

is a random variable.

Example 1.1 Define a sequence of simple functions

n2"—1

X, = ) 5,,1[5%1)X(m).

k=—n2"
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Clearly, X,’s are increasing and all the sets {w * ;;,,<X(w)<k—# are measurable by the

definition of a random variable. Moreover, we shall see that X, converge to a limit X, i. e.

X(w)=limX, (w) for all w.

This example is due to Lebesgue (see Klebaner(2008)), who gave it for non-negative
functions, demonstrating that a measurable function X is a limit of a monotone sequence of
simple function X, , X+, =X,.

More generally, let {Q", F'} be another measurable space. A mapping X:0Q—>Q  is
said to be {F,F’} -measurable if

{w: X(0)KA'})EF, A'€F.
The mapping X is called an Q-valued {F, F'}-measurable (or simply, F'~measurable)
random variable.

An R“ -valued function X (w) = (X, (w), X, (w)y ==y X, (w))" is said to be
F-measurable if all the elements X; are F-measurable. A d X mmatrix-valued function
X(w) =(X;; (@))yxn is said to be F-measurable if all the elements X are F-measurable. If
the measurable space is {R“ ,B?}, a B*~measurable function is called a Borel measurable
Sfunction. Let X : 2 — R“ be any function. The ¢algebra ¢(X) generated by X is the
smallest s-algebra on 2 containing all the sets {w ! X(w) € B}, BCRY open. That is

o(X)=06({w * X(w) €EB} : BCR“open).
Clearly, X will be ¢(X) -measurable and ¢(X) is the smallest g-algebra with this property.
If X is F-measurable, then ¢(X)CF, i.e. X generates a sub-g-algebra of F. If {X, : i€ I}
is a collection of R ¢-valued functions, define
ol X: 1 i€l}=0( LJ’o(X,-)).
i€

which is called the g-algebra generated by {X, : i€ I}. It is the smallest s-algebra with
respect to which every X; is measurable.

Lemma 1. 1 (The Doob-Dynkin lemma) If X,Y : 02— R“are two given function, then
Y is 0(X) measurable if and only if there exists a Borel measurable function g : B¢ — R ¢
such that Y=_g(X).

A function P : F—[0, 1] is said to be a probability measure P on a measurable space
@, if

() P@)=1;

(i) AEF = P (A')=1—F (A), where A*=0/A;

(iii) (Countable additivity) For any disjoint sequence {A;},-CF(i.e. A, NA, = if i
#j)

?

00

P (U A;))= D) P(A).
i=1

=

The triple (2,F,P ) is called a probability space.
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1If (Q,F,P) is a probability space, define
F={ACqn: 3B, CEF:BCACC, P(B)=P (O)}.

Then F is a g-algebra and is called the completion of F. If F=F, the probability space
(Q2+F,7) is said to be complete. 1f not, we can extend P to F by defining P (A)=F (B)=
P (C) for AEF, where B, CE€ F with the properties that BCACC and P (B)=F (C).
So(2,F,F ) is a complete probability space, called the completion of (Q,F,FP).

A collection of sets {A, : i€ I} CF is said to be independent if

P (A; NA;, N NA,)=P (A P (A,)P(A,)

for all possible choices of finite indices 7, +i3,°** 41, € I, where I be an index set.

Two sub-g-algebras F, and F, of F are said to be independent if

PANA)Y=FP (AP (A

forall A,€F,, A,EF,.

A collection of sub-g-algebras {F; : i € I} is said to be independent if for every
possible choice of indices 7,4 i5,++, 1, €1,

P (A, NA;, N=NA,)=P (A, P (A,)P (A,)

for all A, EF; .A,Z €F, ;s A, €F,.A family of random variables {X; : z&€ I} is said to
be independent if the g-algebras ¢(X;), i€ I generated by them are independent.

For example, two random variables X : 2—R“and Y : 2—R™ are independent if and
only if

Plo X(w)EA, Y(WEB}=P{w*® X(w EA}P {w: Y(w) €B}

holds for all A€ BY, B€ B”.

1.2.2 Expectation and Moment

Let (2.F,F ) be a probability space. X is real-valued random variable, then
EX= J X(@)dFP (w)
n

is said to be the expectation of X (with respect to P ) if X is integrable with respect to the
probability measure P . For an B ¢ -valued random variable X =(X,, X,, =, X,)' €
L'(Q2:;E%), define EX=(EX,, EX,,,EX,)"€R?. For a d X m-matrix-valued random
variable X= (X )yxn € L' (Q; E"*"), define EX=(EX; ) yxn € R¥*", Denote L?(2;R‘) by
the family of 7 “-valued random variable X with E | X|*<Too, If 1<<{p<Tco, then L?(2;R“)
is a Banach space with the norm (E | X|#)"*, L*(2;R ) is a Hilbert space with its inner
product (X, Y)=FE (X"Y). E | X|?(p>0) is said to be the p-th moment of X for X&€ L*
(Q; 5. VI(X)=E (X—EX)? is said to be the wvariance of X for X€ L*(2;R4). Cov(X,
Y)=E[(X—EX)(Y—EY)] is said to be the covariance of X and Y for X, YEL*(Q2;R ).

X and Y are said to be uncorrelated if Cov(X, Y)=0 for X, YEL*(Q;E ). The
symmetric non-negative definite d Xd matrix

CoviX, Y)=E[(X—EX)(Y—EY)"], X,YEL*(Q;RY
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is called their covariance matriz. For any X; € L' (Q;R)(i=1,2,,d), if X,,X,,-, X,

are independent, then

d d
s (ITx)= 1T = x.
i=1 =1
If X, YEL*(2;R ) are uncorrelated, then
VIX+Y)=V(XO+V(Y).
If X and Y are independent, they are uncorrelated, the converse is not true. If (X, Y) has

a joint normal distribution, then X and Y are independent if and only if they are

uncorrelated.
Let X be an R“ -valued random variable. puy is said to be a probability measure
induced by X on the Borel measurable space (R“ ,B%) in the sense of
/,:X(B)zP{w : X(w) € B}
for BE BY, and py is said to be the distribution of X. The expectation of X can now be

expressed as
EX = J_ded,l,((x).
More generally, if g # R =R" is Borel measurable, then
Eg(X) = Ldg(x)d,ux(x).

The integral of the right is Lebesgue-Stieltjes integral with respect to gy ( * ).
The following moment inequalities will play an important role in this book.

(1) Holder inequality
|E (XTY) |<<(E |X|")} (E [X|DF, p>1, %+%=1, XELM (R4, YELI(Q;RY).
In particular, |EX|<CE | X| for X€L'(Q2;RY).
(2) Lyapunov’s inequality
(E |X|N7<(E |X|")7, 0<r<p<oco, XELP(Q;R).
(3) Minkovski’s inequality
(E |X+Y[|?D7F<(E |X|")7+(E |X|*)7, p>1, X, YEL'(Q;RD).
(4) Chebyshev’s inequality
P{Q): IX((IJ)|>€}<€7PE lepq E>Oy f)>09 XELP(H;Rd).
(5) C, inequality
d d
E‘ZX,‘pgcpZ E|X, |P
i=1 i=1
for X€ L*(Q;R?), C,=1 for 0<<p<<1 or C,=d*" ' for p>1.
(6) Jensen’s inequality
g(EXO<E (g(XD),
where XEL'(Q;R?), gt RY > R is a convex function.

The following convergence concepts are very useful in this book.



1 Stochastic Integral

Definition 1.1 Let X and X, (k=>1) be R?-valued random variables.
(1) {X,} is said to converge to X almost surely or with probability one, if there exists
a P -null set A€ F such that for every w€ A, the sequence {X, (w)} converges to X(w) in

the usual sense in R, we write lim X, =X a. s.

koo

(2) {X.} is said to converge to X stochastically or in probability if for every e>0,
Plw: | Xi(w)—X(w)|>e} = 0, as b — oo,

(3) {X,.} is said to converge to X in p-th moment or in €L (Q;R*) if X,, XE L’ (Q;
R9) and E | X, —X|?—0,

(4) {X,} is said to converge to X in distribution if for every real-valued continuous
bounded function g defined on R¢, }L!E Eg(X,)=Eg(X).

According to these notations, we may obtain immediately:

(i) Almost surely convergence => convergence in probability = convergence in
distribution.

(i1) Convergence in L= convergence in probability = converge in distribution.

(iii) A sequence converges in probability if and only if its every subsequence contains
an almost surely convergent subsequence.

Moreover

2EIXk—XI”<OOforsomep>0:>lim X, =X a.s.
=1 koo

Theorem 1.2 (i) (Monotonic convergence theorem) If {X,} is an increasing sequence

of non-negative random variables, then
I}Lr{l EX.=E (I!LIE X).

(ii) (Dominated convergence theorem) Let p=1, {X,}CL*(Q2;R“) and YE L? (;
R ). Assume that | X, |<Y a.s. and {X,} converges to X in probability. Then X€ L*(Q2;
R4), {X,} converge to X in L*(Q;R 4), and

}im EX,=EX.

When Y is bounded, this theorem is also referred as the bounded convergence theorem.

(iii) (The Fatous Lemma) If X,CL'(Q;R*), X,>0, then

E (limﬂian,,)<limninf EX,.
Let {A:} be a sequence of sets in F. The set of all those points which belong to

infinitely many A, is said to be the superior limits of A, and is denoted by lim supA,.
koo

Clearly,

lim sup A, = {w * w€ A, for infinitely many £} = ﬂ UA,,.
e i=1 k=i

The set of all those points which belong to almost all A, is said to be the inferior limit of
A, and is denoted by lim inf A,.
h—won



