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PREFACE

With the enhanced property of steel materials and design requirements of
twisting members in steel systems, thin-walled cold-formed steel structures are
widely used in practical engineering projects. Therefore, teaching and engineer-
ing technical staffs who are engaged in the theoretical research and design of steel
structures urgently need to understand the torsional, flexural-torsional and dis-
tortional buckling in terms of bending and torsion of thin-walled members. This
text book is written towards post-graduates who major in steel structure.

Commonly, readers deal with the torsional and flexural-torsional buckling of
thin-walled members while ignoring the distortional buckling. So staffs of steel
structures need to have full master of the buckling modes of thin-walled mem-
bers. In order to address this need, combined with years of practical teaching
experience and engineering design projects, Professor Chen Ji stresses much
importance on the elastic and elastic-plastic theoretical analysis of thin-walled
torsional members, which can make the attention of readers towards the distor-
tional buckling. The changes inside the structure and manifestation form of
deformation of members under various external force are stressed in this book to
predict the failure modes of structures.

The contents in this book are as follows: Torsion of thin-walled cold-formed
open section, elastic torsion and bending-torsion of axial compression members,
distortional buckling of cold-formed lipped channel section, distortional buckling
under in-plane uniform bending of monosymmetric and bisymmetric I-shape
beams and the latest scientific research results. Also contained in this book are
references related of each chapter. The contents in this book have a common focal
point that post-graduates should pay attention to the study of fundamental theory
and practical use. The examples in this book have detailed explanation and pro-
vide readers with elaborate deriving processes, making readers fully understand

the problems of thin-walled members.

XU9 S. J- l Songy W. J.
2014, 5



FOREWORD

This book is written for graduate students in colleges and universities as a
text book and also can be used by structural engineers and researchers, since the
various design provisions of specifications are discussed in this book such as AS/
NZS 4600-2005"¥ Ed. Standards Australian/ New Zealand Stand on Cold-Formed
Steel Structures, Sydney Australia 2005; CSA Standards S16-2009 Design of Steel
Structures, Canadian Standards Association, Mississauga, Ontario, 2009; Din
18800-2;: Stahbauten, Stabilitatsfalle, knicken von Staben und Stabwerken,
1990; GB 50017—2014 Code for the Design of Steel Structures, China Plan
Press, Beijing, 2014 (in Chinese) and GB 50018—2013 Specification of the De-
sign of Cold-From Thin Walled Steel Structures, China Plan Press, Beijing, 2013
(in Chinese).

There are eleven chapters in this book, Chapter 1 includes the history of tor-
sion of steel structural members, such as the sand-heap analogy for the full plas-
tic torque of solid section beam, developed by Nadai, in 1931, Chapter 2 Intro-
duction gives the elastic-torsion shear and warping torsion stresses of I-section
thin-walled steel member from Trahair, N. S, and Pi, Y. L. in 1997. Chapter 3
provides the linear elastic torsional behavior of I-section thin-walled steel mem-
ber, in which the expression of thin-walled open cross-section member under tor-
sion, graduated student on study, Xu, S, J. gives a good suggestion, Chapter 4
gives the elastic torsional buckling of axial compression under the twisting de-
formation as the angle a between the inclining f{iber and the vertical line in which
the effect of residual stress distribution and end boundary conditions on elastic
torsional buckling load are considered. Chapter 5 explains the elastic section dis-
tortional buckling stress of the cold-formed lipped channel involved the twist ro-
tation and the lateral bending displacement of the compression flange. For calcu-
lation, an equilibrium method and a numerical method are used. Chapter 6 shows
the simply supported bi-symmetrically welded I-beam under in-plane uniform
bending in order to explain its distortional buckling. In 1995, Papangelis, J. P.,
Hancock, G. J. and Trahair, N S, and in 2006, Samanta, A. and Kumar, A.
indicate that, for the short mono-symmetric I-section beam, the distortional
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mode is predominant and for long mono-I-section beam, the flexural buckling
mode is predominate, Chapter 7 shows the simply supported bi-symmetrically
welded I-beam under in-plane uniform bending in order to explain its distortional
buckling. In 1980, Hancock, G. ]J., Bradford, M. A. and Trahair, N. S, used
an energy method obtain the analytical solution of the elastic lateral-distortional
buckling moment of bi-symmetrical I-section beam in uniform bending. Chapter 8
I-section beams and beam-columns under bending and torsion use different meth-
ods to calculate the out-of-plane stability, sometime take place flexural and tor-
sional deformations before they reach their ultimate state, Chapter 9 in 1953,
Timoshenko, S. P. predicts the elastic torsional behavior of a thin-walled steel I-
section beam, in which the combination of twist rotations and stresses is stated.
Chapter 10 First yield condition of steel structural I-section beam under torsion is
obtained, in which, the combined warping normal stress with shear stress due to
the uniform torsion and with shear stress due to the warping torsion are stated.
Chapter 11 Inelastic torsionabehavior is usually modeled as being elastic-plastic
strain hardening in which the plastic collapse torsion and uniform-torsion plastic
torque under combined bending and torsion are conducted by Dinno, K. S. and

Merchant, W. in 1965 and testing results are given.

Chen Ji
E-mail: chenji_jichen@163. com
May, 2014
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SOME SYMBOLS USED IN TEXTBOOK

Area

Bi-moment

Elastic modulus

Shear modulus of elasticity
Height

Moment of inertia

n
Torsion section constant [,= 2 I

i=1

I-section warping constant
Uniform-torque

Warping torque

Torsional buckling load

Coefficient of Wagner effect
Shear center; static moment
Warping static moment
Second modulus

Width of flange

Width of web

Polar radius of sectional gyration
Coordinate of shear center
Polar distance

Warping normal stress
Warping shear stress

Angle of twist rotation

Sectorial coordinate



CONTENTS

PREFACE

FOREWORD

SOME SYMBOLS USED IN TEXTBOOK

CHAPTER 1 HISTORY OF TORSION OF STEEL STRUCTURAL

MEMBERS  t+vtetertutttttetientmemtnsienseenenmnernenrmmnmsmenrnrnennre 1
il areEes, #» ++1asn FEAENN L EXRHARYEAYES SEEAS LT RE NN 1O SHPR FEEHO RN SO NSS SRR 3
CHAPTER:2 INTRODBCTION 161+5vs%1sisiass igsers vases assnse ssnsonsssesavasnus inavsss 5
Reforence snssanvsiivess siaamssiesn i pER EBEY 5OBIRA SRE ihoopfo fghtinssins Connee isomone 6
CHAPTER 3 LINEAR ELASTIC TORSIONAL BEHAVIOR -+ +cseseesesescsne. 7
Rl Banines .. «wnessmassarerss vurtassiahniannssiaaman messn s swvErssssoeERTES NERSTE onsaaRiey 17
CHAPTER 4 ELASTIC TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
OF AXIAL COMPRESSION MEMBERS  tvecvereseetesensereanenes 19
4,1 Elastic Torsional Buckling of Centrally Compressed Members -+« 19
4.2 Effect of Residual Stress Distribution on Elastic Torsional
Buickling Lioad: ' +ssssssssconssavsasasorassssvansi sonsss ponssunassonononsssassssnes 21
4.3 Effect of End Boundary Conditions on Torsional
Buckling Lond sntsssussuossmsssss s ceumsssmanss e veams sxases Sisamsses 99
4.4 Elastic Flexural-torsional Buckling of Axial Compression
Members - cveossossssstpiiossrivocsosssneaisvinassvbocnessssosonssosseesssinnnosisns 25
Problern . . seessssencannansesicnsintantscscstntsesessnsnessssnnsssennnsssosrssrenesoessssns 32
Refereiite /v ovs 60oes diaiite s dnis ¥y vo oo 8650 siovosgsionos oo soss soaenssssaonsssss saiseinssis 59
CHAPTER 5 ELASTIC DISTORTIONAL BUCKLING OF AXIAL COMPRESSION
MEMBERS 175 4550548656535 06556 645058 4556 i &alo o diim s sssins s B ibigaes e ftese 33
5.1 Elastic Section Distortional Buckling Stress ««ssseeeeeseeeiiiinini, 33

5.2 Equilibrium Method to Determine Elastic Distortional

Bugkling Lo - «sswessrsonsassnsnnesmessesessonsvonssnnnnsanssdn srsnagsosans siss 34
5.3 To determine Elastic Distortional Buckling Stresses

and Loads According to Schafer, B. W. and Pekoéz, T.

Hatidle Nothod) ssswstssomnessmesmniinsse senmns anens s oxommens snmnssnsve snemsys 36

5.4 To determine Elastic Distortional Buckling Stresses



5 e CONTENTS

and Loads According to AS/NZS 4600-20052Ed. «++reerrerracnnennn 37
Problem  cecreecerereretiiiiiiiiiiiiiiiiiiiiiitiitiiiiieit i tia s esisittsianaiaaeans 46
References +reseeeresceacencetesnissrastescsscnscsssnesssssssssscsssssnscssssncansssansss 46

CHAPTER 6 DISTORTIONAL BUCKLING OF STEEL BI-SYMMETRIC
I-SECTION BEAMS UNDER IN-PLANE
UNIFORM BENDING. «sevssevsnsvisivsssvnissvsnissosessisseas ssessodns 47
6.1 Theoretical Analysis on Distortional Buckling of Bisymmetric
Egection BEaiiis +«ssveerassssnoresasenrsdosstordoasahobrofocervasioasnriedsarebns 49

6.2 Theoretical Analysis on Distortional Buckling of Monosymmetric

Fseotion Baami s sneoes srsnosconvonssavsssssansansannssssrbbieiissssmsssmssaanios 53
RGlOrenes  soesevsaasons siassnbaaesssvons s s samesssvabias s sass s ounssssdssn ssramseoine 60
CHAPTER 7 DISTORTIONAL BUCKLING OF STEEL BI-SYMMETRIC
I-SECTION BEAM-COLUMNS  cceveeresentmmmummmmmenmemmnmmmemnnes 62
Distortional Buckling of Steel Bi-symmetric I-section Beam-columns «++++ 62
Reference seeceerreesecssscrnratcsncerorsaesrescnssassasssnsssssasesssssasssnssssonsscsnsss 64
CHAPTER 8 I-SECTION BEAMS AND BEAM-COLUMNS UNDER BENDING
AND TORSTON i+ sihdossaosssivaivionsbodsgussdst onnbosvbsdsssos cvoes avese 65
8.1 Governing Differential Equations of Biaxial Bending Beam with
TOEGIOH o erevarsininarsrermsenisserenssronronsstorvenivponsvnsiesbusreavsrsvsvonss 65
8.2 Two Methods to Check Stability for Biaxial Bending Beam with
TorGion  swes srssweinies s arimenanessiasaakr TR vssneduivss s assn anhasbeas s 67
Problom.: sserssssersunnvesvssorsinsnrontoss sevauwsmpasnntoes sbbanisdsasaspies sssens susis 81
RSB - - 555548 507 500 4 54 TS o6 TS RS SSRGS 45 s SRS A RS54 82
CHAPTER 9 ELASTIC TORSIONAL BEHAVIOR  c+cceeeerrecerenrermurmemiencans 84
Referenoes res-rersssssesrassrnorrsavosassrssvovssarvsnevesansveransronsanenidnsvnsnnes 86
CHAPTER 10 FIRST YIELD CONDITION OF STEEL STRUCTURAL MEMBER
UNDER/TORSTON .1 5++ 5555 4o oo nttdeThios 1355k o shioboinssiatiossnsislso vos sinds 87
Reference secereseceessctcititnisencctsrasersonecersscscssscstsssssansssscossssscsssnsssses 88
CHAPTER 11 INELASTIC TORSIONAL BEHAVIOR :::eveveceeererenninie 89
Plastic-collapse Analysis of TOrsion — sresesseeeeeresrreereermeemeereneenennannnans 89
References ceseserecscenrancienirnssraisosonscorosnestsssnsstssssrsrscsssesnsasesnssonsss 92

ANSWERS TO SOME SELECTED PROBLEMS :---- S S 93



CHAPTER 1 HISTORY OF TORSION OF
STEEL STRUCTURAL MEMBERS

Although the torsional analysis of beams has attracted the interest of many
researchers since Saint-Venant'"'! in 1855 solved the problem of elastic uniform
torsion, it appears difficult to predict the ultimate strengths of steel I-beams in
non-uniform torsion. Many researches have been carried out into elastic uniform
torsion and expressions have been obtained for the warping displacements of the
cross section, Some analytical solutions for the uniform elastic-plastic torsion of
beams with various cross sections have also been obtained.

Nadai, A. "% in 1931 developed the sand-heap analogy for the full plastic
torque of solid section beams, Christopherson, D. G.'* in 1940 obtained an
elastic-plastic bending solution for an I-section, and, later, Nadai, A."* in 1954
used the rooftop membrane analogy for the elastic-plastic solution of various
cross section beams. Sokolovsky, W. W. "% in 1946 developed an elastic-plastic
solution for an oval section beam, and Smith, J. O. and Sidebottom,O, M, %
in 1965 derived an elastic-plastic bending solution for prismatic bars of rectangu-
lar sections. Billinghurst, A., Williams, J. R. L., Chen, G. and Trahais, N.
S. ™ in 1992 used the mitre method to obtain elastic-plastic bending solutions
for various cross sections.

The linear elastic non-uniform torsion of thin-walled open section beams is
studied by Timoshenko, N. S. and Gere, J. M. "# in 1961, Vlasov, V. J. ¥
in 1961 and Wagner, H. "' in 1936 by considering small angles of cross-section
rotation ¢ (so that sing 2 ¢, cosp=a=1). Because of the complexity of the elastic-
plastic analysis of the non-uniform torsion of beams, no analytical solutions have
been obtained so far.

Approximate solutions for the small-rotation elastic-plastic nonuniform tor-
sion of I-section cantilevers are suggested by Boulton, N. S, in 1962, Dinno,
K. S. and Merchant, W, "2 in 1965, Augusti, G. ") in 1966 and Boulton, N.
S. in 1962 presented a lower-bound theory, while Dinno, K. S, and Merchant,
W. in 1965 developed a so-called Merchant upper bound for the full plastic

torque-carrying capacities of I-section cantilevers, Augusti, G. in 1966 presented
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an additional theory that gave results between the upper and lower bounds and
proved that the Merchant upper bounds a true upper bound.

Since thin-walled open sections have low torsional stiffness, the torsional de-
formations can be of such magnitudes that it is not adequate to treat the angles of
rotation as small. When finite twist rotation angles are considered, the elastic u-
niform torsion problem becomes nonlinear. Ashwell, D. G."' in 1951 and
Gregory, M. ") in 1960 study both theoretically and experimentally the elastic
nonlinear behavior of twisted cantilevers of different cross sections under uniform
torsion conditions. Tso, W. K. and Ghobarah, A. A.'"') in 1971 presented a
study of the nonlinear non-uniform elastic torsion of thin-walled open sections.

Recently, numerical methods have been used by some researchers to investi-
gate the elastic plastic uniform and non-uniform torsional behavior of beams.
Yamada, Y., Katagir, S. and Takatruka, K."'"! in 1972, Johnson, A. F. "
in 1973, and Itani, R. Y. in 1979 studied elastic-plastic uniform torsion.
Baba, S. and Kajita, T.%! in 1982 used a two-node, four-degree-of-freedom
beam element for the uniform torsion analysis and a four-node, 12-degree-of-free-
dom rectangular section element for the warping analysis of the section. Their
linear and nonlinear predictions of the deformations are quite similar and they
concluded that the solutions for the plastic torque of beams should lie in-between
the sand heap analogy and Merchant upper bound. Bathe, K. J. and Chaudhary,
A. ™) in 1982 used warping displacement functions for beams of rectangular
cross section in the formulation of a two-node Hermitian-based beam and in the
formulation of a variable number of nodes isoparametric beam for the linear and
nonlinear analysis of torsion. Bathe, K. J. and Wiener, R, M. "%/ in 1983 em-
ployed a Hermitian beam element and a nine-node shell element for the elastic-
plastic non-uniform torsion of I-beams. Gellin, S., Lee, G. C. and Chern, J.
M. %1 in 1983 presented a strip finite-element model for the analysis of the non-
linear material behavior of thin-walled members in non-uniform torsion. May, J.
M. and Al-Shaarbaf, A. J."*! in 1989 used a standard three-dimensional 20-
node isoparametric quadratic brick element in the elastic-plastic analysis of uni-
form and non-uniform torsion of members subjected to pure and warping torsion.
Their results supported Baba, S, and Kajita, T’ s. “conclusions. Chen, G. and
Trahair, N. S."% in 1991 developed a finite-element model for the inelastic
analysis of non-uniform torsion of I-section beams by using the mitre model to de-

scribe the shear strain distribution over the cross section.
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Some experimental studies for the elastic-plastic uniform torsion of I-sections
are carried out by Boulton, N. S, in 1962 and Dinno, S. S. and Gill, K. S, %]
in 1964 included two tests with ends free to warp. The experimental torque re-
sults are much higher than tbose predicted by the Merchant upper bound and very
large rotation angles are sustained before failure occur. The experimental torque
result conducted by Farwell, C. R. Jr, and Galambos, T. V."? in 1969 is
shown in Fig, 1. 1.

Fig 1.1 Test setup of steel wide flange I-section beam under non-uniform torsion

(a) Under a load applied mid-span of beam 5 before testing; and (b) After testing until to failure

The purposes of this paper are to present an elastic-plastic model for analy-
zing large torsional deformations of I-section beams, and to investigate the elas-

tic-plastic behavior of I-section beams in non-uniform torsion.
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CHAPTER 2 INTRODUCTION

Torsion effects are rarely considered in the design of steel structures, usual-
ly because of the difficulty in analyzing them. Even when elastic computer analy-
ses are used to predict torsion effects, there is a lack of advice on how to design
for these except by a first-yield analysis of the critical member cross sections,
which are difficult to determine and analyze. Torsion in a thin-walled steel mem-
ber is resisted by a combination of the resistance to uniform torsion. Fig. 2.1 (a)
developed by shear stresses that vary almost linearly across the thickness of the
section wall, and the resistance to warping torsion [ Fig. 2. 1 (b)] developed by
equal and opposite flange bending and shear actions from Trahair, N. S. and Pi,
Y. L'*%in 1997. Although an elastic theory for combining these two torsion ac-
tions is well developed, manual solutions are sufficiently difficult to discourage

its use in routine design.

v [« 4 >
. = P =
—»] 1,
< ‘y %9 i

(a) (b)

> I |«

Fig. 2.1 Elastic-torsion shear stresses of I-section thin-walled steel member

(a) Uniform torsion shear stresses z,; and (b) Warping torsion shear streses ry,

Furthermore, the apparently significant combinations of the shear stresses of
uniform torsion with the normal and shear stresses of warping torsion lead to fur-
ther difficulties. A first difficulty is the combinations of these different stresses,

which cause first yield. More difficult is the determination of the most heavily
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stressed point in the member, because these stresses vary in different ways
around the cross section and along the member.

On the other hand, designs based on elastic analysis are likely to be extreme-
ly conservative, not only because of the significant difference between the first
yield in a cross section and full plasticity, but also because of the unaccounted for
yet significant reserves of strength that are not mobilized in redundant members

until after inelastic redistribution takes place.
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CHAPTER 3 LINEAR ELASTIC TORSIONAL
BEHAVIOR

The linear elastic methods of torsion analysis assume that the material has a
linear elastic stress-strain relationship and that the twist rotations remain small,
so that the stresses and twists are proportional to the applied torques, as shown
in Fig. 3. 1. The elastic methods of linear torsion analysis are well established by
Timoshenko, S, P.™" in 1953; Timoshenko, S. P. and Goodier, S. N, %! in
1970, Vlasov, V. Z. % in 1961, Zbirohowski-koscia, K. ** in 1967, Kollbrun-
ner, C. F. and Basler, K. **in 1969, Trahair, N. S. and Bradford, M. A, [*%
in 1991 and Trahair, N. S."*7 in 1993. The engineering method consists of two
parts; cross-section analysis that relates the stresses to the stress resultants and
linear member analysis that relates the twist relations and stress resultants to the
applied torsional loading. The combination of these two parts allows the twist ro-

tations and stresses to be predicated.
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Fig. 3.1 Torsional behavior of I-section thin-walled steel member

The linear elastic method of torsion analysis is most logically used for ser-

viceabity design., Under service loading, most if not all of the member remains
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elastic and the linear elastic analysis closely predicts twist rotations, These and
any related deflections can then be assumed by comparing them with what are
considered to be limiting values.

Linear elastic torsion analysis is less logically used for strength design be-
cause yielding usually takes place well before the ultimate torsion capacity is
reached. Nevertheless, the absence of accepted methods offailure prediction has
forced designers to use the linear elastic method to predict the stresses caused by
the strength design loads and to compare them with limiting values that are usu-
ally related to the yield stress. This method generally gives very conservative
strength predications.

Cross-section analysis under uniform torsion consists of the uniform-torsion of the

shear stresses 7, and the uniform-torque M, of the stress resultant as follows.

M, =GIl%f 3.1

Eq. (3. Dis related to dg/dz, in which G = shear modulus of elasticity; I, =
bt*/3 = torsion section constant, ¢ = angle of twist rotation and z = axial dis-
tance along the member.

For a thin-walled open section composed of several long and narrowplates,
such as the I-shape, channel shape, T shape and angle-shape etc. , the total tor-
sional constants may be approximately taken as the sum of the torsional constant

I, of each plate.

=1, = %Zn:b,t? (3.2)
i i=1

in which &; and ¢, denote the width and thickness of plate i respectively and n de-
notes the number of the component plates. For hot rolled steel, there is some
surplus area near the junction of the plates. This makes the torsion constant in-
crease, According to the experimental material and empirical formula, each sur-
plus part at the corner may make the value of I, increase 6% for the rolled chan-
nel section with two surplus parts. But for the rolled I-section and H-section
with surplus parts, each surplus part may make the value of I, increase 7. 5%.
There, the torsional constant of a hot-rolled I-section may be taken as the result
of Eq. (3. 2) time a coefficient 1. 3. '

Very thin-walled open sections have low values of I, and their uniform tor-
sion resistance may be neglected. Closed sections have large values of I, and uni-

form torsion dominates their resistance to torsion.



