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Between the idea
And the reality
Between the motion
And the act
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Preface

This book is aimed at postgraduate students in applied mathematics as well
as at engineering and physics students with a firm background in mathemat-
ics. The first four chapters can be used as the material for a first course on
inverse problems with a focus on computational and statistical aspects. On
the other hand, Chapters 3 and 4, which discuss statistical and nonstation-
ary inversion methods, can be used by students already having knowldege of
classical inversion methods.

There is rich literature, including numerous textbooks, on the classical
aspects of inverse problems. From the numerical point of view, these books
concentrate on problems in which the measurement errors are either very
small or in which the error properties are known exactly. In real-world prob-
lems, however, the errors are seldom very small and their properties in the
deterministic sense are not well known. For example, in classical literature the
error norm is usually assumed to be a known real number. In reality, the error
norm is a random variable whose mean might be known.

Furthermore, the classical literature usually assumes that the operator
equations that describe the observations are exactly known. Again, usually
when computational solutions based on real-world measurements are required.
one should take into account that the mathematical models are themselves
only approximations of real-world phenomena. Moreover, for computational
treatment of the problem, the models must be discretized, and this introduces
additional errors. Thus, the discrepancy between the measurements and the
predictions by the observation model are not only due to the “noise that has
been added to the measurements.” One of the central topics in this book 1=
the statistical analysis of errors generated by modelling.

There is rich literature also in statistics, especially concerning Bayesian
statistics, that is fully relevant in inverse problems. This literature has been
fairly little known to the inverse problems community, and thus the main aim
of this book is to introduce the statistical concepts to this community. As for
statisticians, the book contains probably little new information regarding. for
example, sampling methods. However, the development of realistic observation
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models based, for example, on partial differential equations and the analysis
of the associated modelling errors might be useful.

As for citations, in Chapters 1-6 we mainly refer to books for further read-
ing and do not discuss historical development of the topics. Chapter 7, which
discusses our previous and some new research topics, also does not contain
reviews of the applications. Here we refer mainly to the original publications
as well as to sources that contain modifications and extensions which serve to
illustrate the potential of the statistical approach.

Chapters 5-7, which form the second part of the book, focus on problems
for which the models for measurement errors, errorless observations and the
unknown are really taken as models, which themselves may contain uncertain-
ties. For example, several observation models are based on partial differential
equations and boundary value problems. It might be that part of the boundary
value data are inherently unknown. We would then attempt to model these
boundary data as random variables that could either be treated as secondary
unknowns or taken as a further source of uncertainty and compute its contri-
bution to the discrepancy between the observation model and the predictions
given by the observation model.

In the examples, especially in Chapter 7 that discusses nontrivial problems,
we concentrate on research that we have carried out earlier. However, we also
treat topics that either have not yet been published or are discussed here with
more rigor than in the original publications.

We have tried to enhance the readibility of the book by avoiding citations
in the main text. Every chapter has a section called “Notes and Comments”
where the citations and further reading, as well as brief comments on more
advanced topics, are given.

We are grateful to our colleague and friend, Markku Lehtinen, who has ad-
vocated the statistical approach to inverse problems for decades and brought
this topic to our attention. Much of the results in Chapter 7 have been done in
collaboration with our present and former graduate students - as well as other
scientists. We have been privileged to work with them and thank them all. We
mention here only the people who have contributed directly to this book by
making modifications to their computational implementations or otherwise:
Dr. Ville Kolehmainen for Sections 7.2 and 7.9, Dr. Arto Voutilainen for Sec-
tion 7.4, Mr. Aku Seppénen for Sections 7.5 and 7.7 and Ms. Jenni Heino for
Section 7.8. We are also much obliged to Daniela Calvetti for carefully reading
and commenting the whole manuscript and to the above-mentioned people for
reading some parts of the book. For possible errors that remain we assume
full responsibility.

This work was financially supported by the Academy of Finland and the
Finnish Academy of Science and Letters (JPK) to whom thanks are due.
Thanks are also due to the inverse problems group at the University of Kuopio
and to vice head of the Applied Physics department, Dr. Ari Laaksonen, who
saw to the other author’s duties during his leave. Thanks are also due to Dr.
Geoff Nicholls and Dr. Colin Fox from the University of Auckland, NZ, where



Preface XI

much of the novel material in this book was conceived during the authors’
visits there.

Helsinki and Kuopio Jari P. Kaipio
June 2004 Erkki Somersalo
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1

Inverse Problems and Interpretation of
Measurements

Inverse problems are defined, as the term itself indicates, as the inverse of di-
rect or forward problems. Clearly, such a definition is empty unless we define
the concept of direct problems. Inverse problems are encountered typically in
situations where one makes indirect observations of a quantity of interest. Let
us consider an example: one is interested in the air temperature. Temperature
itself is a quantity defined in statistical physics, and despite its usefulness and
intuitive clarity it is not directly observable. A ubiquitous thermometer that
gives us information of the air temperature relies on the fact that materials
such as quicksilver expand in a very predictable way in normal conditions as
the temperature increases. Here the forward model is the function relating
the volume of the quicksilver as a function of the temperature. The inverse
problem in this case is trivial, and therefore it is not usually considered as
a separate inverse problem at all, namely the problem of determining the
temperature from the volume measured. A more challenging inverse problem
arises if we try to measure the temperature in a furnace. Due to the high
temperature, the traditional thermometer is useless and we have to use more
advanced methods. One possibility is to use ultrasound. The high tempera-
ture renders the gases in the furnace turbulent, thus changing their acoustic
properties which in turn is reflected in the acoustic echoes. Now the forward
model consists of the challenging problem of describing the turbulence as a
function of temperature plus acoustic wave propagation in the medium, and
its even more challenging inverse counterpart of determining the temperature
from acoustic observations.

It is the legacy of Newton, Leibniz and others that laws of nature are often
expressed as systems of differential equations. These equations are local in the
sense that at a given point they express the dependence of the function and
its derivatives on physical conditions at that location. Another typical feature
of the laws is causality: later conditions depend on the previous ones. Locality
and causality are features typically associated with direct models. Inverse
problems on the other hand are most often nonlocal and/or noncausal. In
our example concerning the furnace temperature measurement, the acoustic
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echo observed outside depends on the turbulence everywhere, and due to the
finite signal speed, we can hope to reconstruct the temperature distribution
in a time span prior to the measurement, i.e., computationally we try to go
upstream in time.

The nonlocality and noncausality of inverse problems greatly contribute to
their instability. To understand this, consider heat diffusion in materials. Small
changes in the initial temperature distributions smear out in time, leaving the
final temperature distribution practically unaltered. The forward problem is
then stable as the result is little affected by changes in the initial data.

Going in the noncausal direction, if we try to estimate the initial temper-
ature distribution based on the observed temperature distribution at the final
time, we find that vastly different initial conditions may have produced the
final condition, at least within the accuracy limit of our measurement. On
the one hand, this is a serious problem that requires a careful analysis of the
data; on the other hand we need to incorporate all possible information about
the initial data that we may have had prior to the measurement. The statis-
tical inversion theory, which is the main topic of this book, solves the inverse
problems systematically in such a way that all the information available is
properly incorporated in the model.

Statistical inversion theory reformulates inverse problems as problems of
statistical inference by means of Bayesian statistics. In Bayesian statistics all
quantities are modeled as random variables. The randomness, which reflects
the observer’s uncertainty concerning their values, is coded in the probability
distributions of the quantities. From the perspective of statistical inversion
theory, the solution to an inverse problem is the probability distribution of
the quantity of interest when all information available has been incorporated
in the model. This distribution, called the posterior distribution, describes
the degree of confidence about the quantity after the measurement has been
performed.

This book, unlike many of the inverse problems textbooks, is not con-
cerned with analytic results such as questions of uniqueness of the solution of
inverse problems or their a priori stability. This does not mean that we do not
recognize the value of such results; to the contrary, we believe that uniqueness
and stability results are very helpful when analyzing what complementary in-
formation is needed in addition to the actual measurement. In fact, designing
methods that incorporate all prior information is one of the big challenges in
statistical inversion theory.

There is another line of textbooks on inverse problems, which empha-
size the numerical solution of ill-posed problems focusing on regularization
techniques. Their point of view is likewise different from ours. Regularization

. techniques are typically aimed at producing a reasonable estimate of the quan-
tities of interest based on the data available. In statistical inversion theory,
the solution to an inverse problem is not a single estimate but a probability
distribution that can be used to produce estimates. But it gives more than just
a single estimate: it can produce very different estimates and evaluate their



1.1 Introductory Examples 3

reliability. This book contains a chapter discussing the most commonly used
regularization schemes, not only because they are useful tools for their own
right but also since it is informative to interpret and analyze those methods
from the Bayesian point of view. This, we believe, helps to reveal what sort
of implicit assumptions these schemes are based on.

1.1 Introductory Examples

In this section, we illustrate the issues discussed above with characteristic
examples. The first example concerns the problems arising from the noncausal
nature of inverse problems.

Example 1: Assume that we have a rod of unit length and unit ther-
mal conductivity with ends set at a fixed temperature, say 0. According to
the standard model, the temperature distribution u(z,t) satisfies the heat
equation

0*u  Ou
otz ot
with the boundary conditions

=0, 0<z<1,t>0,

u(0,t) = u(1,t) =0
and with given intial condition
u(z,0) = ug(x).

The inverse problem that we consider is the following: Given the temperature
distribution at time 7" > 0, what was the initial temperature distribution?
Let us write first the solution in terms of its Fourier components,

oo
u(z,t) = Z ene™ "t sinnra.

n=1

The coefficients ¢, are the Fourier sine coefficients of the initial state uyg, i.e.,
o0
uo(z) = Z ¢y sinnmz.
n=1

Thus, to determine ug, one has only to find the coefficients ¢, from the final
data. Assume that we have two initial states ué’ ) , j = 1,2, that differ only by

a single high-frequency component, i.e.,

u(()l)(a:) - u(()z)(z) =cnsin N7z,

for N large. The corresponding solutions at the final time will differ by



