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Dedicatory Note

On April 25, 2000, as the last editorial touches were added to
our book, Lucien Le Cam passed away. At Berkeley, he worked
without stopping on the final revision of our book up until the
time when he was hospitalized, just four days before his death.

His passing is a great loss to the statistical profession. He was
a fundamental thinker in mathematical statistics and a principal
architect of the modern asymptotic theory of statistics, follow-
ing and extending the path of Neyman and Wald. Among the
numerous seminal concepts that he introduced, the Le Cam dis-
tance between experiments provides a coherent statistical theory
that links asymptotics and decision theory.

I was privileged and extremely fortunate to be his student and
later his collaborator on several projects, including this book.
Statisticians all know that Professor Le Cam was a brilliant
mathematician. His students, colleagues, and friends also know
of his kindness, generosity, integrity and patience.

This book is dedicated to the memory of Professor Le Cam.
We feel his loss keenly. He will be greatly missed.

Grace Lo Yang
College Park, Maryland

May 2000



Preface to the
Second Edition

This is a second edition, “reviewed and enlarged” as the French
used to say. The 1990 edition was generally well received, but
complaints about the conciseness of the presentation were heard.
We have tried to accommodate such concerns, aiming at being
understood by a “good” second-year graduate student.

The first edition contained some misleading typos. They have
been removed, but we cannot guarantee that the present version
is totally free of misprints.

Among substantial changes, we have introduced a Chapter
4 on gaussian and Poisson experiments. The gaussian ones are
used everywhere because of mathematical tractability. Poisson
experiments are less tractable and less studied, but they are
probably more important. They will loom large in the new cen-
tury.

The proof of asymptotic sufficiency of the “centerings” of Chap-
ter 6 has been reworked and simplified. So has Chapter 7, Sec-
tion 4. Section 5 of the same chapter has been augmented by a
derivation of the Cramér-Rao lower bound imitated from Baran-
kin [1949).

We thought of adding material on the von Mises differentiable
functions and similar entities; we did not. The reader can refer
to the recent book by van der Vaart [1998]. Similarly, we did
not cover the use of “empirical processes” even though, follow-
ing Dudley’s paper of 1978, they have been found most valuable.
A treatment of that material is expected to appear in a book
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by Sara van de Geer. Also, we did not include material due to
David Donoho, Iain Johnstone, and their school. We found our-
selves unprepared to write a distillate of the material. We did
touch briefly on “nonparametrics,” but not on “semiparamet-
rics.” This is because we feel that the semiparametric situation
has not yet been properly structured.

We hope that the reader will find this book interesting and
challenging, in spite of its shortcomings.

The material was typed in LaTeX form by the authors them-
selves, borrowing liberally from the 1990 script by Chris Bush.
It was reviewed anonymously by distinguished colleagues. We
thank them for their kind encouragement. Very special thanks
are due to Professor David Pollard who took time out of a busy
schedule to give us a long list of suggestions. We did not follow
them all, but we at least made attempts.

We wish also to thank the staff of Springer-Verlag for their
help, in particular editor John Kimmel, who tried to make us
work with all deliberate speed. Thanks are due to Paul Smith,
Te-Ching Chen and Ju-Yi-Yen, who helped with the last-minute
editorial corrections.

Lucien Le Cam
Berkeley. California
Grace Lo Yang

College Park, Maryland

February 2000



Preface to the First
Edition

In the summer of 1968 one of the present authors (LLC) had
the pleasure of giving a sequence of lectures at the University
of Montreal. Lecture notes were collected and written out by
Drs. Catherine Doléans, Jean Haezendonck and Roch Roy. They
were published in French by the Presses of the University of
Montreal as part of their series of Séminaires de Mathématiques
Supérieures. Twenty years later it was decided that a Chinese
translation could be useful, but upon prodding by Professor
Shanti Gupta at Purdue we concluded that the notes should be
updated and rewritten in English and in Chinese. The present
volume is the result of that effort.

We have preserved the general outline of the lecture notes,
but we have deleted obsolete material and sketched some of
the results acquired during the past twenty years. This means
that while the original notes concentrated on the LAN situation
we have included here some results of Jeganathan and others
on the LAMN case. Also included are versions of the Hajek-Le
Cam asymptotic minimax and convolution theorems with some
of their implications. We have not attempted to give complete
coverage of the subject and have often stated theorems without
indicating their proofs.

What we have attempted to do is to present a few concepts
and tools in an elementary manner refering the reader to the
general literature for further information. We hope that this
will provide the reader with a way of thinking about asymptotic
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problems in statistics that is somewhat more coherent than the
traditional reliance upon maximum likelihood.

We wish to extend our thanks to the Presses of the University
of Montreal for the permission to reuse some copyrighted ma-
terial and to Springer-Verlag for the production of the present
volume.

We also extend all our thanks to Professor Kai-Tai Fang whose
efforts with Science Press are very much appreciated.

The English version of the manuscript was typed at Berkeley
by Ms. Chris Bush whose patience and skill never cease to amaze
us.

As Chris can attest, producing the typescript was no simple
task. We were fortunate to have the help of Ruediger Gebauer
and Susan Gordon at Springer-Verlag. We are very grateful for
the assistance of Mr. Jian-Lun Xu in the preparation of the
Chinese version.

Lucien Le Cam
Berkeley, California
Grace Lo Yang

College Park, Maryland

October 1989
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1

Introduction

In this volume we describe a few concepts and tools that we
have found useful in thinking about asymptotic problems in
statistics. They revolve largely around the idea of approximating
a family of measures, say, £ = {Py; 0 € O} by other families, say,
F = {Qo; 0 € O} that may be better known or more tractable.

For example, contemplate a situation where the statistician
observes a large number of independent, identically distributed
variables X, X, ..., X,, that have a common Cauchy distribu-
tion with density

1
f(z,6) = w1+ (z—6)?
on the line.

Let Py, be the joint distribution of X,,..., X,,. Let Z, be
another variable that has a gaussian distribution G4, with ex-
pectation 6 and variance 2/n on the real line.

The theory expounded in later chapters says that, for n large,
the two families £, = {Py ;0 € R} and F,, = {Gon; 6 € R} are,
for most statistical purposes, very close to each other.

For another example, suppose that Y7, Y5, ...Y, are indepen-
dent with a common density [1 — |z — 0|]* on the line. Let Qy
be their joint distribution and let Hy, be gaussian with mean
6 and variance 1/(nlogn). Then, for n large, {Qpn; 60 € R} and
{Heg n;0 € R} are very close to each other.

Chapter 2 introduces distances that are intended to make pre-
cise the above “close to each other.” The ideas behind the possi-
ble introduction of such distances go back to Wald [1943]. They
are also related to the “comparison of experiments” described
by Blackwell [1951] and others. Here, following Blackwell, we
shall use the name “experiment” for a family £ = {P,;6 € 6}
of probability measures Py carried by a o-field A of subsets of a
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set X. The set © is often called thef “parameter space.” It is con-
venient to think of each 6 as a theory that provides a stochastic
model P, for the observation process to be carried out by the
experimenter.

Note that in the preceding example of comparison between
the Cauchy {Pp ;0 € R} and the gaussian {Gg,;0 € R}, the
parameter space is the same © = R but the Cauchy observations
are in a space X = R" while the gaussian Z, is one dimensional.
The distance introduced in Chapter 2 gives a number for any
pair &€ = {P;0 € O} and F = {Q;0 € O} provided that
they have the same parameter space ©. Chapter 2 also gives,
for © finite, a standard representation of experiments indexed
by © in the form of their Blackwell canonical representation.
It shows that, for finite fixed ©, convergence in the sense of
our distance is equivalent to convergence of the distribution of
likelihood ratios.

Chapter 3 is about some technical problems that occur in the
convergence of likelihood ratios. They are often simplified dras-
tically by the use of a condition called “contiguity.” That same
chapter also introduces Hellinger transforms and Hellinger dis-
tances. They are particularly useful in the study of experiments
where one observes many independent observations.

Chapter 4 is about gaussian experiments and Poisson ex-
periments. By “gaussian,” we mean gaussian shift experiments
where the covariance structure is supposed to be known and
is not part of the parameter space. The parameter space de-
scribes the possibilities available for the expectations of the
gaussian distributions. The system is described in a general,
infinite-dimensional setup to accommodate nonparametric or
semi-parametric studies. Poisson experiments occur in many
studies concerned with “point processes.” They are not as math-
ematically tractable as the gaussian experiments, but they may
be more important. Both Poisson and gaussian experiments are
cases of infinitely divisible experiments, the gaussian case rep-
resenting a form of degeneracy obtainable by passages to the
limit. Both Poisson and gaussian experiments can be obtained
in situations where one has many independent observations.
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Some of the limit theorems available in that situation form
the object of Chapter 5. It gives, in particular, a form of what
Héjek and Sidék were friendly enough to call “Le Cam’s three
lemmas.”

Chapter 6 is about the LAN conditions. LAN stands for local
asymptotic normality, which really means local asymptotic ap-
proximation by a gaussian shift experiment linearly indexed by
a k-dimensional space. In addition to detailing some of the con-
sequences of the LAN conditions around a point, the chapter
contains the description of a method of construction of esti-
mates: One starts with a good auxiliary estimate 68, and picks a
suitable set of vectors {u, ;1 =0,1,2,...,k} with u,o = 0 and
{uni;t =1,...k}, a basis of the parameter space R*. Then one
fits a quadratic to the logarithms of likelihood ratios computed
at the points 8} + un; + un;, 4,J = 0,1,...,k. One takes for
the new estimate T}, the point of R* that maximizes the fitted
quadratic.

In the LAN case, the estimate so constructed will be asymp-
totically minimax, asymptotically sufficient. It will also satisfy
Héajek’s convolution theorem, proved here by van der Vaart’s
method. The chapter ends with a description of what happens
in the locally asymptotically mized normal (LAMN) case. Here,
we cite mostly results taken from Jeganathan’s papers, referring
to the books by Basawa and Prakasa Rao, [1980], Basawa and
Scott [1983], Prakasa Rao [1987], and Greenwood and Shiryaev
[1985] for other results and examples.

Chapter 7 comes back to the case of independent observa-
tions, describing what the LAN conditions look like in that case
and more particularly in the standard independent identically
distributed case. Most statisticians have heard of a theory of
maximum likelihood based on Cramér’s conditions. The theory
obtainable by application of the results of Chapter 6 is some-
what similar but more in tune with the concepts of Chapter 2.
Its conditions are weaker than those used by Cramér. A suffi-
cient condition is an assumption of differentiability in quadratic
mean, discussed at some length here. The theory also works in
other cases, as shown by several examples. We have also in-



