J. Sabatier

0. P. Agrawal

J. A. Tenreiro Machado
Editors

Advances in
Fractional Calculus

Theoretical De\Md Applications

in Physics and Engineering

S EPB IR T

Z 0B E e E)
www.wpcbj.com.cn

Springer



Advances 1n Fractional Calculus

Theoretical Developments and Applications
in Physics and Engineering

edited by

J. Sabatier

Université de Bordeaux |
Talence, France

O. P. Agrawal

Southern Illinois University
Carbondale, IL, USA

and

J. A. Tenreiro Machado

Institute of Engineering of Porto
Portugal

@ Springer



EHEM&B (CIP) iFE

SRHASY : T/ () BB ERE . —dtat: AR HRA E
desAT, 2014.7
ISBN 978 7 -5100 - 7784 -5

.4 0.QO# - I OMFs—%E3x N.DOo172
o [ B A B B4 CIP $dE#% s (2014) %5 057892 5

+H % .  Advances in Fractional Calculus: Theoretical Developments and Applications
in Physics and Engineering

£ 2. ] Sabatier, O.P. Agrawal, J. A. Tenreiro Machado (Editors)

hOiE & BB

HEHE: &E XE

H AR &: HREBERARIERAT

BN Rl #&: =TWHERESHRAA

® 47 HREABHEARIEAR (JEESIAAHE 137 5 100010)

BAEEIE: 010 -64021602, 010 —64015659

BFEH: kjb@ wpcbj. com. cn

7F . 24 -

2] gt.  23.5

kit w: 201447 H

FR#LEiE:  EF: 01 -2014 3455

978 -7 -5100 - 7784 -5 & fir:  99.00 Ju




A C.LP. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-6041-0 (HB)
ISBN 978-1-4020-6042-7 (¢Book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

The views and opinions expressed in all the papers of this book are the
authors’ personal one.

The copyright of the individual papers belong to the authors. Copies cannot
be reproduced for commercial profit.

Reprint from English language edition:

Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and
Engineering

edited by J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado

Copyright © 2007 Springer

Springer is a part of Springer Science+Business Media

All Rights Reserved

This reprint has been authorized by Springer Science & Business Media for distribution in
China Mainland only and not for export therefrom.



We dedicate this book to the honorable memory of our
colleague and friend Professor Peter W. Krempl



Preface

Fractional Calculus is a field of applied mathematics that deals with
derivatives and integrals of arbitrary orders (including complex orders), and
their applications in science, engineering, mathematics, economics, and
other fields. It is also known by several other names such as Generalized
Integral and Differential Calculus and Calculus of Arbitrary Order. The
name “Fractional Calculus” is holdover from the period when it meant
calculus of ration order. The seeds of fractional derivatives were planted
over 300 years ago. Since then many great mathematicians (pure and
applied) of their times, such as N. H. Abel, M. Caputo, L. Euler, J. Fourier,

A. K. Grunwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren,
P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann
M. Riesz, and H. Weyl, have contributed to this field. However, most
scientists and engineers remain unaware of Fractional Calculus; it is
not being taught in schools and colleges; and others remain skeptical of this
field. There are several reasons for that: several of the definitions proposed
for fractional derivatives were inconsistent, meaning they worked in some
cases but not in others. The mathematics involved appeared very different
from that of integer order calculus. There were almost no practical
applications of this field, and it was considered by many as an abstract area
containing only mathematical manipulations of little or no use.

Nearly 30 years ago, the paradigm began to shift from pure mathematical
formulations to applications in various fields. During the last decade
Fractional Calculus has been applied to almost every field of science,
engineering, and mathematics. Some of the areas where Fractional Calculus
has made a profound impact include viscoelasticity and rheology, electrical
engineering, electrochemistry, biology, biophysics and bioengineering,
signal and image processing, mechanics, mechatronics, physics, and control
theory. Although some of the mathematical issues remain unsolved, most
of the difficulties have been overcome, and most of the documented key
mathematical issues in the field have been resolved to a point where many
of the mathematical tools for both the integer- and fractional-order calculus
are the same. The books and monographs of Oldham and Spanier (1974),
Oustaloup (1991, 1994, 1995), Miller and Ross (1993), Samko, Kilbas, and
Marichev (1993), Kiryakova (1994), Carpinteri and Mainardi (1997),
Podlubny (1999), and Hilfer (2000) have been helpful in introducing the
field to engineering, science, economics and finance, pure and applied
mathematics communities. The progress in this field continues. Three
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xii Preface

recent books in this field are by West, Grigolini, and Bologna (2003),
Kilbas, Srivastava, and Trujillo (2005), and Magin (2006).

One of the major advantages of fractional calculus is that it can be
considered as a super set of integer-order calculus. Thus, fractional calculus
has the potential to accomplish what integer-order calculus cannot. We
believe that many of the great future developments will come from the
applications of fractional calculus to different fields. For this reason, we
are promoting this field. We recently organized five symposia (the first
symposium on Fractional Derivatives and Their Applications (FDTAs),
ASME-DETC 2003, Chicago, Illinois, USA, September 2003; IFAC first
workshop on Fractional Differentiations and its Applications (FDAs),
Bordeaux, France, July 2004; Mini symposium on FDTAs, ENOC-2005,
Eindhoven, the Netherlands, August 2005; the second symposium on
FDTAs, ASME-DETC 2005, Long Beach, California, USA, September
2005; and IFAC second workshop on FDAs, Porto, Portugal, July 2006) and
published several special issues which include Signal Processing, Vol. 83,
No. 11, 2003 and Vol. 86, No. 10, 2006; Nonlinear dynamics, Vol. 29, No.
1-4, 2002 and Vol. 38, No. 1-4, 2004; and Fractional Differentiations and its
Applications, Books on Demand, Germany, 2005. This book is an attempt to
further advance the field of fractional derivatives and their applications.

In spite of the progress made in this field, many researchers continue to ask:
“What are the applications of this field?”” The answer can be found right
here in this book. This book contains 37 papers on the applications of
Fractional Calculus. These papers have been divided into seven categories
based on their themes and applications, namely, analytical and numerical
techniques, classical mechanics and particle physics, diffusive systems,
viscoelastic and disordered media, electrical systems, modeling, and
control. Applications, theories, and algorithms presented in these papers
are contemporary, and they advance the state of knowledge in the field. We
believe that researchers, new and old, would realize that we cannot remain
within the boundaries of integral order calculus, that fractional calculus is
indeed a viable mathematical tool that will accomplish far more than what

integer calculus promises, and that fractional calculus is the calculus for the
future.

Most of the papers in this book are expanded and improved versions of
the papers presented at the Mini symposium on FDTAs, ENOC-2005,
Eindhoven, The Netherlands, August 2005, and the second symposium on
FDTAs, ASME-DETC 2005, Long Beach, California, USA, September
2005. We sincerely thank the ASME for allowing the authors to submit
modified versions of their papers for this book. We also thank the authors
for submitting their papers for this book and to Springer-Verlag for its
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publication. We hope that readers will find this book useful and valuable in
the advancement of their knowledge and their field.

= @WM@ T Touncino Mucheek

Dr. J. Sabatier Prof. O. P. Agrawal Prof. J. A. Tenreiro Machado
LAPS — CRONE group College of Engineering Institute of Engineering of
Bordeaux 1 University Southern Illinois Porto

France University Dept. of Electrotech.
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THREE CLASSES OF FDEs AMENABLE
TO APPROXIMATION USING
A GALERKIN TECHNIQUE

Satwinder Jit Singh and Anindya Chatterjee

Mechanical Engineering Department, Indian Institute of Science, Bangalore
560012, India

Abstract

We have recently presented elsewhere a Galerkin approximation scheme
for fractional order derivatives, and used it to obtain accurate numerical solutions
of second-order (mechanical) systems with fractional-order damping terms. Here,
we demonstrate how that approximation can be used to find accurate numerical
solutions of three different classes of fractional differential equations (FDEs), where
for simplicity we assume that there is a single fractional-order derivative, with
order between 0 and 1. In the first class of FDEs, the highest derivative has integer
order greater than one. An example of a traveling point load on an infinite beam
resting on an elastic, fractionally damped, foundation is studied. The second class
contains FDEs where the highest derivative has order 1. Examples of the so-called
generalized Basset’s equation are studied. The third class contains FDEs where the
highest derivative is the fractional-order derivative itself. Two specific examples are
considered. In each example studied in the paper, the Galerkin-based numerical
approximation is compared with analytical or semi-analytical solutions obtained by
other means. In each case, the Galerkin approximation is found to be very good. We
conclude that the Galerkin approximation can be used with confidence for a variety
of FDEs, including possibly nonlinear ones for which analytical solutions may be
difficult or impossible to obtain.

Keywords

Fractional derivative, Galerkin, finite element, Basset’s problem, relaxation,
creep.

1 Introduction

A fractional derivative of order « is given using the Riemann—Louville defini-
tion [1, 2], as

D°10) = Fr gy, 7]

3
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4 Singh and Chatterjee

where 0 < a < 1. Two equivalent forms of the above with zero initial condi-
tions (as in, e.g., [3]) are given as

1 Pa(r) 1 ba(t—r1)
rid—a) /o (t—r)adT_F(l—a)/o T gre W)

Differential equations with a single-independent variable (usually “time”),
which involve fractional-order derivatives of the dependent variable(s) are
called fractional differential equations or FDEs. In this work, we consider
FDEs where the fractional derivative has order between 0 and 1 only. Such
FDEs, for our purposes, are divided into three categories, depending on
whether the highest-order derivative in the FDE is an integer greater than 1,
is exactly equal to 1, or is a fraction between 0 and 1.

In this article, we will demonstrate three strategies for these three classes of
FDEs, whereby a new Galerkin technique [4] for fractional derivatives can be
used to obtain simple, quick, and accurate numerical solutions. The Galerkin
approximation scheme of (4] involves two calculations:

D%[xz(t)] =

Aa+Ba=ci(t) (2)

and

a _— 1 i,

DO~ Firara—a ¢ ® 3)
where A and B are n x n matrices (specified by the scheme; see [4]), ¢ is an
n x 1 vector also specified by the scheme!, and a is an n x 1 vector n internal
variables that approximate the infinite-dimensional dynamics of the actual
fractional order derivative. The T superscript in Eq. (3) denotes matrix trans-
pose.

As will be seen below, the first category of FDEs (section 2) poses no real
problem over and above the examples already considered in [4]. That is, in
[4], the highest derivatives in the examples considered had order 2; while in
the example considered in section 2 below, the highest derivative will be or
order 4. However, the example of section 2 is a boundary-value problem on an
infinite domain. Our approximation scheme provides significant advantages for
this problem. The second category of FDEs (section 3) also leads to numerical
solution of ODEs (not FDEs). The specific example considered here is relevant
to the physical problem of a sphere falling slowly under gravity through a
viscous liquid, but not yet at steady state. Again, the approximation scheme
leads to an algorithmically simple, quick and accurate solution. However, the
equations are stiff and suitable for a routine that can handle stiff systems,
such as Matlab’s “ode23t”. Finally, the third category of FDEs (section 4)
leads to a system of differential algebraic equations (DAEs), which can be

solved simply and accurately using an index one DAE solver such as Matlab’s
“ode23t”.

1 A Maple-8 worksheet to compute the matrices A, B, and ¢ is available on [5].
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We emphasize that we have deliberately chosen linear examples below
so that analytical or semi-analytical alternative solutions are available for
comparing with our results using the Galerkin approximation. However, it
will be clear that the Galerkin approximation will continue to be useful for

a variety of nonlinear problems where alternative solution techniques might
run into serious difficulties.

2 Traveling Load on an Infinite Beam

The governing equation for an infinite beam on a fractionally damped elastic
foundation, and with a moving point load (see Fig. 1), is

m c 1
Urzzr + ﬁ’utt + ED:/ZU + -E—Iu = —El-é(:r —wt), (4)

where D'/2 has a t-subscript to indicate that x is held constant. The boundary
conditions of interest are

u(+oo,t) =0.

—_V

—— Point Load

- - ol

-00  322TTTIIIIIIITITIIIIcEIIIIIIIIAIEIIIIIIIAAAS

Fig. 1. Traveling point load on an infinite beam with a fractionally damped elastic
foundation.

-

We seek steady-state solutions to this problem.

2.1 With Galerkin

With the Galerkin approximation of the fractional derivative, we get the new
PDEs

u F g+ ° cTa-i-iu———l—é( — vt)
zzzz T ETY T BIT(1/2)T(3/2) EI'T TEICTV

Aa+ Ba = cuy,



