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Dedication

To my mother
and to the memory of my father

“For even as He loves the arrow that flies, so He
loves also the bow that is stable.”



Preface to the Second Corrected Printing

The material in the first volume of this book is standard and I have changed
little in revising it for the second edition. My main task has been to correct the
numerous errors that, having escaped detection in the original manuscript,
were brought to my attention after the book came to print. My thanks to
all those who have helped in this enterprise by informing me of an insidious
misspelling, a mistake in an equation, or a mislabeled figure. A few other
superficial changes have been made; I have reworked many of the figures and
“prettied up” the typesetting in one or two spots.

There is just one change of real substance. I have chosen to replace the
designation “quantum regression theorem,” which has been standard in quan-
tum optics circles for some three decades, with the more accurate “quantum
regression formula.” The replacement is perhaps not perfect, since the re-
gression procedure introduced by Lax is expressed by different formulas on
different occasions. In some cases the procedure runs very much parallel to
Onsager’s classical regression hypothesis — i.e., when a linearized treatment
of fluctuations is carried out. In others it does not. The point to be made,
however, is that the formula used, whatever its specific form, is never the
expression of a “theorem”; it is the expression of a Markovian open system
dynamics, reached from a microscopic model in quantum optics by way of
an approximation, the same Markov dynamics that one finds defined, more
formally, in the semigroup approach to open quantum systems. Physicists,
all too often, remain unworried about semantic accuracy in a matter like
this; the common designation is historical and no doubt harmless enough.
On the other hand, for some reason, which was always difficult for me to un-
derstand, the quantum regression formula has attracted an undeserved level
of suspicion throughout its 30 years of use; it seems not to be appreciated
that the formula for multi time averages enjoys precisely the same ground-
ing, Markov approximation and all, as the master equation itself - just as
the master equation emerges in the Schrodinger picture, so, in the Heisenberg
picture, emerges Lax’s quantum regression. Given, then, what I perceive to
be a background of misunderstanding, I think it wise to be as accurate and
clear as possible. I have therefore avoided the word “theorem” in this second
edition of Vol. 1, and also in Vol. 2. T have also added some commentary re-
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lating to this point in the section of Vol. 1 devoted to the quantum regression
formula.

Auckland Howard Carmichael
May 2002



Preface to the First Edition

As a graduate student working in quantum optics I encountered the question
that might be taken as the theme of this book. The question definitely arose
at that time though it was not yet very clearly defined; there was simply some
deep irritation caused by the work I was doing, something quite fundamental I
did not understand. Of course, so many things are not understood when one is
a graduate student. However, my nagging question was not a technical issue,
not merely a mathematical concept that was difficult to grasp. It was a sense
that certain elementary notions that are accepted as starting points for work
in quantum optics somehow had no fundamental foundation, no identifiable
root. My inclination was to mine physics vertically, and here was a subject
whose tunnels were dug horizontally. There were branches, certainly, going up
and going down. Nonetheless, something major in the downwards direction
was missing—at least in my understanding; no doubt others understood the
connections downwards very well.

In retrospect I can identify the irritation. Quantum optics deals primarily
with dynamics, quantum dynamics, and in doing so makes extensive use of
words like “quantum fluctuations” and “quantum noise.” The words seem
harmless enough. Surely the ideas behind them are quite clear; after all,
quantum mechanics is a statistical theory, and in its dynamical aspects it
is therefore a theory of fluctuations. But there was my problem. Nothing in
Schrodinger’s equation fluctuates. What, then, is a quantum fluctuation?

In reply one might explore one of the horizontal tunnels. Statistical ideas
became established in thermal physics during the early period of the quantum
revolution. Although the central notions in this context are things like equi-
librium ensembles, partition functions and the like, every graduate student
is aware of the fluctuation aspect through the example of Brownian motion.
Fluctuations are described using probability distributions, correlation func-
tions, Fokker-Planck and Langevin equations, and mathematical devices such
as these. In many instances the quantum analogs of these things are obvious.
So, are quantum fluctuations simply thermal fluctuations that occur in the
quantum realm? Well, once again, nothing fluctuates in Schrédinger’s equa-
tion; yet the standard interpretation for the state solving this equation is sta-
tistical, and speaks of fluctuations, even when the most elementary system is
described. Quantum fluctuations are therefore more fundamental than ther-
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mal fluctuations. They are a fundamental part of quantum theory—though
apparently absent from its fundamental equation—and unlike thermal fluctu-
ations, not comfortably accounted for by simply reflecting on the disorganized
dynamics of a complex system.

I now appreciate more clearly where my question was headed: Yes it does
head downwards, and it goes very deep. What is less clear is that there
is a path in that direction understood by anyone very well. The direction
is towards the foundations of quantum mechanics, and here one must face
those notorious issues of interpretation that stimulate much confusion and
contention but few definitive answers.

I must hasten to add that this book is not about the foundations of quan-
tum mechanics—at least not in the formal sense; the subject is mentioned
directly in only one chapter, near the end of Volume II. It is helpful to know,
though, that this subject is the inevitable attractor to which four decades
of development in quantum optics have been drawn. The book’s real theme
is quantum fluctuations, tackled for the most part at a pragmatic level. It
is about the methods developed in quantum optics for analyzing quantum
fluctuations in terms of a visualizable evolution over time. The qualifier “vi-
sualizable” is carried through as an informal connection to foundations. In
view of it, I emphasize the Schrodinger and interaction pictures over the
Heisenberg picture since in these pictures appropriate representations of the
time-varying states (Glauber-Sudarshan or Wigner representations for exam-
ple) can provide tangible access to something that fluctuates. Such mental
props cannot be taken too literally, however, and the book is as much about
their limitations as about their successes. [ have written the book in a period
when the demands for theoretical analyses of new experiments have required
that the limitations be acknowledged and paid serious attention. The book
meanders a bit in response to the proddings. Hopefully, though, there is
always forwards momentum, towards methods of wider applicability and a
more satisfying understanding of the foundations.

Quantum optics has a unique slant on quantum fluctuations, different
from that of statistical physics with its emphasis on thermal equilibrium,
and also differing from relativistic field theory where fluctuations refer ei-
ther to virtual transitions—dressing stable objects—or little particle “explo-
sions” (collisions) with a well-defined beginning and end. Quantum optics
is concerned with matter interacting with electromagnetic waves at optical
frequencies. At such frequencies, in terrestrial laboratories, it meets with
quantum fluctuations that are real, and ongoing, and not inevitably buried
in thermal noise; at least the latter has been the case since the invention of
the laser; and it is the laser, overwhelmingly, that gives quantum optics its
special perspective. The laser is basically a convenient source of coherence.
Thought of simply, this is the coherence of a classical wave, but it is readily
written into material systems where it must ultimately be seen as quantum
coherence. The mix of coherence (waves) with the particle counting used to
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detect optical fields marks quantum optics for encounters with the difficult
issues that arose around the ideas of Einstein and Bohr at the beginning of
the century. Old issues are met with new clarity, but even more interesting
are the entirely new dimensions. Seen as a quantum field, laser light is in a
degenerate state, having a very large photon occupation number per mode.
This property makes it easy to excite material systems far from thermal
equilibrium. where simple perturbation theory is unable to account for the
dynamics. In the classical limit one expects to encounter the gamut of non-
linear phenomena: instability, bifurcation, multistability, chaos. One might
ask where quantum fluctuations fit in the scheme of such things; no doubt
as a minor perturbation in the approach to the classical limit. But in recent
years the drive in optics towards precision and application has opened up the
area of cavity QED. Here the electromagnetic field is confined within such
a small volume that just one photon can supply the energy density needed
to excite a system far from equilibrium. Under conditions like this, quantum
fluctuations overwhelm the classical nonlinear dynamics. How, then, does the
latter emerge from the fluctuations as the cavity QED limit is relaxed?

The book is divided into two volumes. This first volume deals with the
statistical methods used in quantum optics up to the late 1970s. The ma-
terial included here is based on a series of lectures I gave at the University
of Texas at Austin during the fall semester of 1984. In this early period,
methods for treating open systems in quantum optics were developed around
two principal examples: the laser and resonance fluorescence. The two ex-
amples represent two defining themes for the subject, each identified with
an innovation that extended the ways of thinking in some more established
field. The laser required thinking in QED to be extended, beyond its focus on
few-particle scattering to the treatment of many particle fields approaching
the classical limit. The innovation was Glauber’s coherence theory and the
phase-space methods based on coherent states. The revival of the old topic of
resonance fluorescence moved in the opposite direction. At first its concern
was strong excitation—the nonperturbative limit which had been inaccessible
to experiments before the laser was invented. Soon, however, a second theme
developed. Contrasting with laser light and its approximation to a classical
field, resonance fluorescence is manifestly a quantum field; its intensity fluc-
tuations display features betraying their origin in particle scattering. The
innovation here was in the theory of photoelectron counting—in the need to
go beyond the semiclassical Mandel formula which holds only for statistical
mixtures of coherent states. Thus, the study of resonance fluorescence began
the preoccupation in quantum optics with the so-called nonclassical states of
light.

Resonance fluorescence is treated in Chap. 2 and there are two chapters
in this volume, Chaps. 7 and 8, on the theory of the laser. My aim with the
example of resonance fluorescence is to illustrate the utility of the master
equation and the quantum regression theorem for solving a significant prob-
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lem, essentially exactly, with little more than some matrix algebra. Chapter
1 and the beginning of Chap. 2 fill in the background to the calculations.
Here I provide derivations of the master equation and the quantum regres-
sion theorem. I think it important to emphasize that the quantum regression
theorem is a derived result, equal in the firmness of its foundations to the
master equation itself, and indeed a necessary adjunct to that equation if it
is to be used to calculate anything other than the most trivial things (i.e.
one-time operator averages).

Chapters 3-7 all lead up to a treatment of laser theory by the phase-
space methods in Chap. 8. My purpose in Chap. 8 has been to carry through
a systematic application of the phase-space methods to a nonequilibrium
system of historical importance. Some readers will find the treatment overly
detailed and be satisfied to simply skim the calculations. I would recommend
the option, in fact, when the book is used as the basis for a course. In taking
it, nothing need be lost with regard to the physics since the more useful
results in laser theory are presented in Chap. 7 in a more accessible way. The
earlier chapters have wide relevance in quantum optics. They deal with the
properties of coherent states and the Glauber—Sudarshan P representation
(Chap. 3), the Q and Wigner representations (Chap. 4), and the extension of
these phase-space representations to two-state atoms (Chap. 6). Chapter 5
makes a short excursion to review those results from classical nonequilibrium
statistical physics that are imported into quantum optics on the basis of the
phase-space methods.

Volume I ends with Chap. 8 and the phase-space treatment of the laser.
The treatment provides a rigorous basis for the standard visualization of am-
plitude and phase fluctuations in laser light. The visualization, however, is
essentially classical, and the story of quantum fluctuations cannot be ended
here. Being aware of the approximations used to derive the laser Fokker—
Planck equation and having seen the example of resonance fluorescence, for
which a similar simplification does not hold, it is clear that such classical
visualizations cannot generally be sustained. Volume II will deal with the
extension of the basic master equation approach to situations in which the
naive phase-space visualization fails, where the quantum nature of the fluc-
tuations has manifestations in the actual form of the evolution over time.
Modern topics such as squeezing, the positive P representation, cavity QED,
and quantum trajectory theory will be covered there.

I have sprinkled exercises throughout the book. In some cases they are
included to excuse me from carrying through a calculation explicitly, or to
repeat and generalize a calculation that has just been done. The exercises are
integrated with the development of the subject matter and are intended, lit-
erally, as exercises, exercises for the practitioner, rather than an introduction
to problems of topical interest. Their level varies. Some are quite difficult. The
successful completion of the exercises will generally be aided by a detailed
understanding of the calculations worked through in the book.
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Numerous students and colleagues have read parts of this book as a
manuscript and helped purge it of typographical errors or made other useful
suggestions. I know I will not recall everyone, but I cannot overlook those
whom I do remember. I am grateful for the interest and comments of Paul Als-
ing, Robert Ballagh, Young-Tak Chough, John Cooper, Rashed Haq, Wayne
Itano, Jeff Kimble, Perry Rice, and Murray Wolinsky.

Eugene, Oregon Howard Carmichael
August 1998
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