nnnnnnn

EEXFAEROTE

(SRIhR - SB7hR)

MU T AR % ﬁu Education

China Machine Pre

E. A K B 5 =

24T IS

'3] RT%*“ ﬁ%éﬁ EIJH 1215
(ZRIZhR - SB7hR)

Object-Oriented Classical Software Engmeenng

(Seventh Edltlon)

Stephen R. Schach
(E) s mw re*x2

¢ ¥ /

Stephen R. Schach: Object-Oriented Classical Software Engineering, Seventh Edition (ISBN 13:
978-0-07-319126-3 ISBN 10: 0-07-319126-4).

Copyright © 2007 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All rights reserved. No part of
this publication may be reproduced or distributed in any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

Authorized English language reprint edition jointly published by McGraw-Hill Education (Asia)
Co. and China Machine Press. This edition is authorized for sale in the People’s Republic of China only,
excluding Hong Kong, Macao SARs and Taiwan. Unauthorized export of this edition is a violation of
the Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

ABRSCE AR BHLAR Tk AR F e E Z 55 —H /R B AR (EM) 2w A1EHR, st
FRARAE P AR NRIEFIESE N (A EAEERE., RIMEITBRERERE) #iE, REFTZH
H, ¥YULERGERRE, Rz 2 i,

A& HRE BUEERFR , ARUMERTRE SR A BrERERS .

ABE WA McGraw-Hill2y BIpG thin%E, ThREEAFHE.

B, RS,
FHEEmE) LR T RIARIDES AR

ABRIEIZS: E=F. 01-2007-0471
EBHERSEE (CIP) ¥iE

BT W RGN 3 (EUR 8BTRR) / (%) bk (Schach,S.R.) . —Jbxi:
BUBE Tolk i, 20072

(2 JRRH) i

45483 : Object-Oriented Classical Software Engineering, Seventh Edition

ISBN 978-7-111-20822-8

1.4k 0.9 M. LB-ESESR-8H—%3r IV.TP3115
R [ffu A= B BB CIPE R (2007) 30102505

BUBE Tl HARHE (eoamask X & 5 FEAH22S BB 100037)
TiESEE: BIRE

At at s L ERIA BRA R ENR] - BB bR 2T k4T
200742 A %5 1R 1k EN A

170mm x 242mm - 40.25E[15k

Efr: 59.005¢

JUAHS, A @, B, BRI, AR irEiai
FrtgHhik. (010) 68326294

BhRE 8318

XEBIURE, B kRS iE S RS ARG, ERTERER
APEME N TIRRGE T ZHHEARS W ERXFNESE, EXEEREERER
BRI T ZERLFEL . MOGNE. EflibrdEEs, EEN™ L S5HESR
ORI R A A, HFREALZER R 2 £ WAL [R B B b FHF AN 2 2 1Y B R 2%
H BT ™ A B 2 PR EE, AOUEERI TSR TERE, BIHE THRIIEAE, BEE
TEEARHE, XBAREENYE, KMEHFASESE AR mRE. :

A, E2REAAXEAEZD T, REMNHEIL™LEBRE, 5k AA
IR B a Y], XX REIEE R AR IE, MK, il
IR IRERERIE LEA¥ %R, EREREHEALRERM RS, Ml RED
HBLRT, XEFEREERELTEIEY R REJLEEBIER 28 E 60 058
ZE/EEZL., Hit, 5I3HE—#EIMES HHEVLEM B REHRBILEEF F by
R RERMHEDER, W 5HREHh. BIREENHR —RA¥NLH 2K,

PLAE Tk Rt e B S B ARA G EREIRE “HREAEEFRS”. A
19984E 1 8, LT A R H LIEER AURE Tk, BiIFEIMLBEM £, 2 JLE
WIS h, Ffi15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan
Kaufmanni 57 3 & AR A B T REFIAER R, WENBAREEFEM+
%% tH Tanenbaum, Stroustrup, Kernighan, Jim GrayZE-KIifi 4 5 00—t 28 B/ 5.,
A “HREALEHENE” hEfRHR, ikE%s]. MREEK. KEALEHEE,
WIEABL T X BB b AL F0t& 1A

“HEHILFHEAS" BHRTAERE T EANSMEERR DTS, BEANEEAR
REETHEMEBIES, EAFSEHAE TEIFMERN TE, mEBHESE L
MY REHAEM R ERERE, ANEETERAEBPERERF. £4, “HHRILF
ZNE" B2HR TEEAWF, XEPE/AEFEEPRLTRIFVOM, HHEFL
AR RAAERBH MBS EBRE, AP ERRIT T T REERM.

B & # R RIX P 2 EMBM SEN R, EEFFSFEINTEILEMA
TRFPL AL A DB B, A, BEATEMASIHEMB HE, £ “1F
BEHE" HEMRZ THBREARFTELEM : B “HEILBRZEAE 25,
SR ENRI S, WIRMFREY “@HBFERBE" ; R, SlH2EBTHEFEH
%45 “Schaum’s Outlines” RFIAML “@XKLBHEZ{IRI . AHTRIEX=FEMN
BRI, RFHH T EAF A ERMEIRTIRS, EEAFIE T EFHERE.
K%, HEKYE, BRI RY. EERE, EBREKRE, EREKE. WL

iv

K%, FEFBHE KRS, WRRIIKY, AEXREKRE. FEARKE., =
fiRK%E, dbuBi k%, IR, MEERT KRS, BHKE, BT ¥,
rh] [%05 B 22 A TEFAE A0 25 [N & A R EMBHFLR 28 H BALA & A SR A
ERFEHREAR “FREIEAS, ABNHRELEEERMHREE .

X =N A5 A B B H SR AU MR E M S B, AERNERT RN
HREVEFESGITEN., XPiFZHHHEAM. L. T., Stanford, U.C. Berkeley,
C.M. U. ZFtF LM A¥FEH. AHEETRFRT. BIBEH. BERLK. it
BHLAREN., BIEE. MiFFRE, RETRE, BEY. EEE5M%, EHNES
EAXFTHEILT ISR IRNELRE, MASAFEC—FRNHAEBESRITE
ZF, ANBE=1THMARE., ANEHLUHERFNIILEERRA, 75X HEZE
IR KIENIEIZT, BRELEETRIBIENERPBBEEMAZE,

WERIEE ., 2HEHM . —RVEE. mENER. BANRE, X8EE
ERMOEBAE T REARIE, ERMPVBRERERSE, MRBRPERIERZRN
BRFX AR BN EERE ., HMOHRRRRNMWBEERSIES., EEATE
M TR AT TR (B s THRIE, HAMMBER G &M T !

B, T#Bf4: . hzjsj@hzbook.com

Bk ZHi%: (010) 68995264

BeF M AR AERX AL EREELS
BB 4ahd . 100037

ERESERS

I W
2 #
FHE
I 7 4
RTE
7648 F
B %
&

B4

(Fat R ZE)

ERLE S
I EF
)7 %
[&35
ERIAL o
B E 3
42 e

X A
x %
FRF
4 109 2%
=
J& 1R
A% B 35

2 A
%
RS
B4
A

WA=

The following are registered trademarks:

ADF
Analyst/Designer
Ant

Apache

Apple

AS/400

AT&T

Bachman Product Set
Bell Laboratories
Borland

Bugzilla

Capability Maturity Model
ClearCase
ClearQuest

CMM

Coca-Cola

CORBA

CppUnit

CVS

DB2

Eclipse
e-Components
Emeraude

Enterprise JavaBeans
eServer

Excel

Firefox

Focus

Ford

Foundation Class Library
FoxBASE

GCC
Hewlett-Packard
IBM

IMS/360

Jackpot Source Code Metrics

Java

JBuilder

JUnit

Linux

Lotus 1-2-3

Lucent Technologies
MacApp
Macintosh
Macintosh Toolbox
MacProject
Microsoft

Motif

MS-DOS
MVS/360

Natural

Netscape

New York Times
Object C
Objective-C
ObjectWindows Library
1-800-flowers.com
Oracle

Oracle Developer Suite
08S/360

0S/370

0S/VS2

Palm Pilot

Parasoft

Post-it Note
PowerBuilder
PREfix

PREfast

Project
PureCoverage
PVCS

QARun

Rational

Requisite Pro
Rhapsody

Rose

SBC Communications
SilkTest

SLAM

Software through Pictures
Solaris

SourceSafe
SPARCstation

Sun

Sun Enterprise
Sun Microsystems
Sun ONE Studio
System Architect
Together

UNIX

VAX

Visual Component Library
Visual C++

Visual J++
VM/370

VMS

Wall Street Journal
WebSphere

Win32

Windows 95
Windows 2000
Windows NT

X11

Xrunner

XUnit

Zip disk

ZIP Code

zSeries

Preface

The sixth edition of this book, published in 2004, was vastly different to the fifth edition.

More than half of the sixth edition consisted of new material, much of it on the Unified

Process, and the topics that were retained from the fifth edition were rewritten from a more

modern viewpoint.

Many instructors were kind enough to provide feedback on the sixth edition. They
approved of the drastic changes I had made in the sixth edition, but suggested that the aim
of the seventh edition should be to update the sixth edition, rather than once again make
widespread changes. In addition, a number of instructors have asked for a new running case
study in Part 2 of the book.

Accordingly, there are two types of changes in the seventh edition:

« The book has been updated throughout. In particular, I have considerably expanded the
material on agile processes and open-source software development in Chapters 2 and 4.
The references have been updated, and there are new problems in every chapter.

» I have replaced the Osbert Oglesby case study, used to illustrate the techniques of soft-
ware development in Chapters 10 through 15, with the MSG Foundation case study.

Features Retained from the Sixth Edition

» The Unified Process is still largely the methodology of choice for object-oriented soft-
ware development. Throughout this book, the student is therefore exposed to both the
theory and the practice of the Unified Process.

* In Chapter 1, the strengths of the object-oriented paradigm are analyzed in depth.

» The iterative-and-incremental life-cycle model has been introduced as early as possible,
namely, in Chapter 2. Furthermore, as with all previous editions, numerous other life-
cycle models are presented, compared, and contrasted.

e In Chapter 3 (“The Software Process”), the workflows (activities) and processes of the
Unified Process are introduced, and the need for two-dimensional life-cycle models is
explained.

« A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams”),
including teams for agile processes and for open-source software development.

* Chapter 5 (“The Tools of the Trade”) includes information on important classes of
CASE tools.

* The importance of continual testing is stressed in Chapter 6 (“Testing”).

e Objects continue to be the focus of attention in Chapter 7 (“From Modules to Objects”™).

» The material on interoperability, which was removed from Chapter 8 (“Reusability and
Portability”) in the sixth edition, has not been replaced. In both the fourth and the fifth
editions, these sections became hopelessly out of date during the 6 months it took to
publish the books. In my opinion, the field is moving too fast to be included in a text-
book; an instructor wishing to include interoperability in a software engineering course
should obtain up-to-the-minute material from the Internet.

viii Preface

» The new IEEE standard for software project management plans is again presented in
Chapter 9 (“Planning and Estimating”). .

* Chapter 10 (“Requirements”), Chapter 12 (“Object-Oriented Analysis”), and Chapter 13
(“Design”) are largely devoted to the workflows (activities) of the Unified Process. For
obvious reasons, Chapter 11 (“Classical Analysis™) has not been changed, other than the
case study.

e The material in Chapter 14 (“Implementation™) clearly distinguishes between imple-
mentation and integration.

» The importance of postdelivery maintenance is stressed in Chapter 15.

* Chapter 16 provides additional material on UML to prepare the student thoroughly for
employment in the software industry. This chapter is of particular use to instructors who
utilize this book for the two-semester software engineering course sequence. In the second
semester, in addition to developing the team-based term project or a capstone project, the
student can acquire additional knowledge of UML, beyond what is needed for this book.

* As before, there are two running case studies. The MSG Foundation case study and the
elevator problem case study have been developed using the Unified Process. As usual,
Java and C++ implementations are available online at www.mhhe.com/schach.

+ In addition to the two running case studies that are used to illustrate the complete life
cycle, seven mini case studies highlight specific topics, such as the moving-target prob-
lem, stepwise refinement, and postdelivery maintenance.

+ In all the previous editions, I have stressed the importance of documentation, mainte-
nance, reuse, portability, testing, and CASE tools. In this edition, all these concepts are
stressed equally firmly. It is no use teaching students the latest ideas unless they appre-
ciate the importance of the basics of software engineering.

* As in the sixth edition, particular attention is paid to object-oriented life-cycle models,
object-oriented analysis, object-oriented design, management implications of the
object-oriented paradigm, and the testing and maintenance of object-oriented software.
Metrics for the object-oriented paradigm also are included. In addition, many briefer
references are made to objects, a paragraph or even only a sentence in length. The rea-
son is that the object-oriented paradigm is not concerned just with how the various
phases are performed but rather permeates the way we think about software engineering.
Object technology again pervades this book.

» The software process still is the concept that underlies the book as a whole. To control
the process, we have to be able to measure what is happening to the project. Accordingly,
the emphasis on metrics is retained. With regard to process improvement, the material
on the capability maturity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207
has been retained; the people capability maturity model (P-CMM) has been added to
the chapter on teams.

» The book is still language independent; the few code examples are presented in C++ and
Java, and I have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.printin for Java output, I have
utilized the pseudocode instruction print. (The one exception is the new case study,
where complete implementation details are given in both C++ and Java, as before.)

Preface ix

« As in the sixth edition, this book contains over 600 references. I have selected current
research papers as well as classic articles and books whose message remains fresh and
relevant. There is no question that software engineering is a rapidly moving field, and
students therefore need to know the latest results and where in the literature to find them.
At the same time, today’s cutting-edge research is based on yesterday’s truths, and I see
no reason to exclude an older reference if its ideas are as applicable today as they origi-
nally were.

- With regard to prerequisites, it is assumed that the reader is familiar with one high-level
programming language such as C, C++, Ada, or Java. In addition, the reader is expected
to have taken a course in data structures.

Why the Classical Paradigm Still Is Included

There is now almost unanimous agreement that the object-oriented paradigm is superior to
the classical paradigm. Nevertheless, I feel that attempting to eliminate all mention of the
classical paradigm is unwise.

First, it is impossible to appreciate why object-oriented technology is superior to classi-
cal technology without fully understanding the classical approach and how it differs from
the object-oriented approach. For example, the object-oriented paradigm uses an iterative
and incremental life-cycle model. To show why such a life-cycle model is needed, it is
essential to explain in detail the differences between classical life-cycle models like the
waterfall model and the iterative and incremental life-cycle model of the object-oriented
paradigm. Therefore, all through the book, I have included material on the classical paradigm
so that the student can clearly appreciate the differences between the classical paradigm
and the object-oriented paradigm.

The second reason why I have included both paradigms is that technology transfer is a
slow process. Notwithstanding the impact of Y2K on accelerating the switch to the object-
oriented paradigm, the majority of software organizations still have not yet adopted the
object-oriented paradigm. It therefore is likely that many of the students who use this
book will be employed by organizations that use classical software engineering techniques.
Furthermore, even when an organization uses the object-oriented approach for developing
new software, existing software still has to be maintained, and this legacy software is not
object oriented. Therefore, excluding classical material would be unfair to many of the
students who use this text.

A third reason for including both paradigms is that a student who is employed at an
organization considering making the transition to object-oriented technology will be able
to advise that organization regarding both the strengths and the weaknesses of the new
paradigm. So, as in the previous edition, the classical and object-oriented approaches are
compared, contrasted, and analyzed.

How the Seventh Edition Is Organized

Like the sixth edition of this book, the seventh edition is written for both the traditional
one-semester and the newer two-semester software engineering curriculum, now growing
in popularity. In the traditional one-semester (or one-quarter) course, the instructor has to
rush through the theoretical material to provide the students the knowledge and skills

X Preface

needed for the term project as soon as possible. The need for haste is so that the students
can commence the term project early enough to complete it by the end of the semester. To
cater to a one-semester, project-based software engineering course, Part 2 of this book
covers the software life cycle, workflow by workflow, and Part 1 contains the theoretical
material needed to understand Part 2. For example, Part 1 introduces the reader to CASE,
metrics, and testing; each chapter of Part 2 contains a section on CASE tools for that work-
flow, a section on metrics for that workflow, and a section on testing during that workflow.
Part 1 is kept short to enable the instructor to start Part 2 relatively early in the semester.
Furthermore, the last two chapters of Part 1 (Chapters 8 and 9) may be postponed, and then
taught in parallel with Part 2. As a result, the class can begin developing the term project as
soon as possible.

We turn now to the two-semester software engineering curriculum. More and more
computer science and computer engineering departments are realizing that the overwhelm-
ing preponderance of their graduates find employment as software engineers. As a result,
many colleges and universities have introduced a two-semester (or two-quarter) software
engineering sequence. The first course is largely theoretical (but often includes a small
project of some sort). The second course comprises a major team-based term project. This
is usually a capstone project. When the term project is in the second course, there is no need
for the instructor to rush to start Part 2.

Therefore, an instructor teaching a one-semester (or one-quarter) sequence using the
seventh edition covers most of Chapters 1 through 7 and then starts Part 2 (Chapters 10
through 16). Chapters 8 and 9 can be taught in parallel with Part 2 or at the end of the
course while the students are implementing the term project. When teaching the two-
semester sequence, the chapters of the book are taught in order; the class now is fully prepared
for the team-based term project that they will develop in the following semester.

To ensure that the key software engineering techniques of Part 2 truly are understood,
each is presented twice. First, whenever a technique is introduced, it is illustrated by means
of the elevator problem. The elevator problem is the correct size for the reader to be able to
see the technique applied to a complete problem, and it has enough subtleties to highlight
both the strengths and weaknesses of the technique being taught. Then, the relevant portion
of the MSG Foundation case study is presented. This detailed solution provides the second
illustration of each technique.

The Problem Sets

As in the previous edition, this book has five types of problems. First, there are running
object-oriented analysis and design projects at the end of Chapters 10, 12, and 13. These
have been included because the only way to learn how to perform the requirements, analysis,
and design workflows is from extensive hands-on experience.

Second, the end of each chapter contains a number of exercises intended to highlight key
points. These exercises are self-contained; the technical information for all the exercises
can be found in this book.

Third, there is a software term project. It is designed to be solved by students working in
teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 15 separate components, each tied to the relevant
chapter: For example, design is the topic of Chapter 13, so in that chapter the component of

Preface xi

the term project is concerned with software design. By breaking a large project into smaller,
well-defined pieces, the instructor can monitor the progress of the class more closely. The
structure of the term project is such that an instructor may freely apply the 15 components
to any other project that he or she chooses.

Because this book has been written for use by graduate students as well as upper-class
undergraduates, the fourth type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen; wherever
possible, a paper related to object-oriented software engineering has been selected. The
student is asked to read the paper and answer a question relating to its contents. Of course,
the instructor is free to assign any other research paper; the For Further Reading section at
the end of each chapter includes a wide variety of relevant papers.

The fifth type of problem relates to the case study. This type of problem was first intro-
duced in the third edition in response to a number of instructors who feel that their students
learn more by modifying an existing product than by. developing a new product from
scratch. Many senior software engineers in the industry agree with that viewpoint. Accord-
ingly, each chapter in which the case study is presented has problems that require the
student to modify the case study in some way. For example, in one chapter the student is
asked to redesign the case study using a different design technique from the one used for
the case study. In another chapter, the student is asked what the effect would have been of
performing the steps of the object-oriented analysis in a different order. To make it easy to
modify the source code of the case study, it is available on the World Wide Web at
www.mhhe.com/schach.

The website also has material for instructors, including a complete set of PowerPoint
lecture notes and detailed solutions to all the exercises as well as to the term project.

Material on UML

This book makes substantial use of the Unified Modeling Language (UML). If the students
do not have previous knowledge of UML, this material may be taught in two ways. I prefer
to teach UML on a just-in-time basis; that is, each UML concept is introduced just before
it is needed. The following table describes where the UML constructs used in this book are
introduced.

Section in Which the Corresponding

Construct UML Diagram lIs Introduced
Class diagram, note, inheritance (generalization), Section 7.7
aggregation, association, navigation triangle
Use case Section 10.4.3
Use-case diagram, use-case description Section 10.7
Stereotype Section 12.1
Statechart Section 12.6
Interaction diagram (sequence diagram, collaboration Section 12.15
diagram)

Alternatively, Chapter 16 contains an introduction to UML, including material above
and beyond what is needed for this book. Chapter 16 may be taught at any time; it does not

xii Preface

depend on material in the first 15 chapters. The topics covered in Chapter 16 are as given in
the following table.

Section in Which the Corresponding

Construct UML Diagram Is Introduced
Class diagram, aggregation, multiplicity, composition, Section 16.2
generalization, association
Note Section 16.3
Use-case diagram Section 16.4
Stereotype Section 16.5
Interaction diagram Section 16.6
Statechart Section 16.7
Activity diagram Section 16.8
Package Section 16.9
Component diagram Section 16.10
Deployment diagram Section 16.11
Acknowledgments

I greatly appreciate the constructive criticisms and many helpful suggestions of the re-
viewers of the six previous editions, including

Arvin Agah Thaddeus R. Crews, Jr.
University of Kansas Western Kentucky University
Kiumi Akingbehin Buster Dunsmore
University of Michigan, Dearborn Purdue University

Phil Bernhard Eduardo B. Fernandez
Clemson University Florida Atlantic University
Dan Berry Michael Godfrey

The Technion Cornell University

Don Bickerstaff Bob Goldberg

Eastern Washington University IBM

Richard J. Botting Donald Gotterbarn
California State University, East Tennessee State

San Bernardino University

Michael Buckley Frances Grodzinsky

State University New York, Buffalo Sacred Heart University
Catherine Lowry Campbell Jim Han

New Jersey Institute of Technology Florida Atlantic University
James Cardow Scott Hawker

Air Force Institute of Technology University of Alabama
Betty Cheng Thomas B. Horton
Michigan State University Florida Atlantic University
David Cheriton Greg Jones

Stanford University : . Utah State University

Peter E. Jones

University of Western Australia
Gail Kaiser

Columbia University
Laxmikant V. Kale

University of lllinois

Helene Kershner

University of Buffalo

Werner Krandick

Drexel University

Owen Lavin

DePaul University

Chung Lee

California State Polytechnic, Pomona
Richar A. Lejk

University of North Carolina, Chapel Hill
Bill McCracken

Georgia Institute of Technology
Susan Mengel

Texas Tech University

Everald E. Mills

Seattle University

Fred Mowle

Purdue University

Donald Needham

United States Naval Academy
Ron New

Johns Hopkins University
David Notkin

University of Washington

Andy Podgurski

Case Western Reserve University

Hal Render
University of Colorado, Colorado Springs

In addition, special thanks go to the reviewers

Robert M. Cubert
University of Florida
Michael Hoffman
California State University,
Long Beach

Preface xiii

David C. Rine

George Mason University
David S. Rosenblum
University of California,
Irvine

Shmuel Rotenstreich
George Washington University
Mansur Samadzadeh
Oklahoma State University
John H. Sayler

University of Michigan
Wendel Scarborough

Azusa Pacific University
Bob Schuerman

State College, Pennsylvania
Gerald B. Sheble

lowa State

Fred Strauss

Polytechnic University

K. C. Tai

North Carolina State
University

Toby Teorey

University of Michigan

Jie We

City University of New York
Laurie Werth

University of Texas, Austin
Lee White

Case Western Reserve University
David Workman

University of Central Florida
George W. Zobrist
University of Missouri, Rolla

of this edition, including

Saeed S. Monemi

California State Polytechnic University,
Pomona

Linda Ott

Michigan Technological University

xiv Preface

James Purtilo Fred Strauss
University of Maryland Polytechnic University

Steven Shaffer
Pennsylvania State University

I would like to thank the numerous instructors from all over the world who sent me e-mail
regarding the sixth edition. As always, I am exceedingly appreciative of their suggestions,
comments, and criticisms. In particular, I thank Professor Michael Haugrud (Minnesota
State University Moorhead) for suggesting improvements to the Winburg mini case study.
I look forward with anticipation to receiving instructors’ feedback on this edition also. My
e-mail address is srs@vuse.vanderbilt.edu.

Students, too, continue to be most helpful. Once more I thank my students at Vanderbilt
University for their provocative questions and constructive suggestions, both inside and
outside the classroom. I also am most appreciative of the questions and comments on
the sixth edition e-mailed to me by students from all over the world. Special thanks go
to Benjamin Polak, a student at the University of Erlangen, Germany, for suggesting
improvements to the elevator problem case study. As with the previous editions, I look
forward keenly to student feedback on this edition, too.

I warmly thank three individuals who have also made significant contributions to previ-
ous editions of this book. First, Kris Irwin once again provided a complete solution to the
term project, including implementing it in both Java and C++. Second, Jeff Gray imple-
mented the MSG Foundation case study. Third, Lauren Ryder was again a co-author of the
Instructor’s Solution Manual and contributor to the PowerPoint slides.

I turn now to McGraw-Hill. My publisher Alan Apt and my developmental editor
Rebecca Olson provided assistance and guidance throughout the project. I thank copyedi-
tor Lucy Mullins for her many helpful suggestions. It was a pleasure to work with market-
ing manager Michael Weitz, media manager Christina Nelson, production supervisor Kara
Kudronowicz, and proofreader Carrie Barker. The striking cover of this book was designed
by Michelle Whitaker and Christopher Reese, both of whom I warmly thank. Finally, I par-
ticularly wish to thank production manager Lora Kalb for her endless help and for keeping
the project on schedule. She invariably went the extra mile—and more.

As always, I enjoyed working with the highly competent compositors at Interactive
Composition Corporation. I also thank ICC project manager Deepti Hingle.

Finally, as always, I thank my wife, Sharon, for her continual support. As with all my
previous books, I did my utmost to try to ensure that family commitments took precedence
over writing. However, when deadlines loomed, this was sometimes not possible. At such
times, she was always understanding, and for this I am most grateful.

It is my privilege to dedicate my thirteenth book to my grandson, Jackson, with love.

Stephen R. Schach

Contents

Preface vii

PART ONE
INTRODUCTION TO SOFTWARE
ENGINEERING 1

Chapter 1 .
The Scope of Software Engineering 3

Learning Objectives 3
11 Historical Aspects 4
1.2 Economic Aspects 7
1.3 Maintenance Aspects 8§
1.3.1 Classical and Modern Views
of Maintenance 9
1.3.2 The Importance of Postdelivery
Maintenance 11
1.4 Requirements, Analysis, and Design
Aspects 13
1.5 Team Development Aspects 16
1.6 Why There Is No Planning Phase 17
17 Why There Is No Testing Phase 17
1.8 Why There Is No Documentation
Phase 18
2 The Object-Oriented Paradigm 19
1.10 The Object-Oriented Paradigm
in Perspective 23
1.11 Terminology 24
1.12 Ethical Issues 27
Chapter Review 28
For Further Reading 28
Key Terms 29
Problems 30
References 31

Chapter 2
Software Life-Cycle Models 35
Learning Objectives 35

2 Software Development in Theory 35
22 Winburg Mini Case Study 36

23
24
25
2.6
r i 4
2.8

29

2.10

Lessons of the Winburg Mini

Case Study 40

Teal Tractors Mini Case Study 40

Iteration and Incrementation 41

Winburg Mini Case Study Revisited 45

Risks and Other Aspects of

Iteration and Incrementation 46

Managing Iteration and

Incrementation 49

Other Life-Cycle Models 50

2.9.1 Code-and-Fix Life-Cycle Model 50

2.9.2 Waterfall Life-Cycle Model 51

2.9.3 Rapid-Prototyping Life-Cycle
Model 53

2.94 Open-Source Life-Cycle Model 54

2.9.5 Agile Processes 57

2.9.6 Synchronize-and-Stabilize
Life-Cycle Model 60

2.9.7 Spiral Life-Cycle Model 60

Comparison of Life-Cycle Models 64

Chapter Review 65

For Further Reading 66

Key Terms 67

Problems 67

References 68

Chapter 3
The Software Process 71

3.1
3.2

33
34
3.5
3.6
3.7

Learning Objectives 71

The Unified Process 73

Iteration and Incrementation within
the Object-Oriented Paradigm 73
The Requirements Workflow 75
The Analysis Workflow 77

The Design Workflow 79

The Implementation Workflow 80
The Test Workflow 81

3.7.1 Requirements Artifacts 81
3.7.2 Analysis Artifacts 81

3.7.3 Design Artifacts 82

3.7.4 Implementation Artifacts 82

xvi Contents

3.8 Postdelivery Maintenance 84
3.9 Retirement 85
3.10 The Phases of the Unified Process 85
3.10.1 The Inception Phase 86
3.10.2 The Elaboration Phase 88
3.10.3 The Construction Phase 89
3.10.4 The Transition Phase 89
3.11 One- versus Two-Dimensional
Life-Cycle Models 90
3.12 Improving the Software Process 92
3.13 Capability Maturity Models 92
3.14 Other Software Process
Improvement Initiatives 95
3.15 Costs and Benefits of Software
Process Improvement 96
Chapter Review 98
For Further Reading 98
Key Terms 99
Problems 100
References 100
Chapter 4
Teams 104
Learning Objectives 104
4.1 Team Organization 104
4.2 Democratic Team Approach 106
4.2.1 Analysis of the Democratic
Team Approach 107
43 Classical Chief Programmer
Team Approach 107
4.3.1 The New York Times Project 109
4.3.2 Impracticality of the Classical
Chief Programmer Team
Approach 110
44 Beyond Chief Programmer
and Democratic Teams 110
4.5 Synchronize-and-Stabilize Teams 114
4.6 Teams for Agile Processes 115
4.7 Open-Source Programming
Teams 115
4.8 People Capability Maturity Model 116
4.9 Choosing an Appropriate Team

Organization 117
Chapter Review 118
For Further Reading 118

Key Terms 118
Problems 119
References 119

Chapter 5
The Tools of the Trade 121

Learning Objectives 121
Stepwise Refinement 121

5.1
5.1
S
53
54 CASE
9:9
5.6
3.7
571
522
5.8
5.8.1
5.8.2
5.8.3
39
5.10
Chapter 6

Testing 149

6.1

6.2

Stepwise Refinement Mini
Case Study 122

Cost—Benefit Analysis 127
Software Metrics 129

130

Taxonomy of CASE 131
Scope of CASE 133
Software Versions 136

Revisions 137
Variations 137

Configuration Control 138

Configuration Control during
Postdelivery Maintenance 140
Baselines 140

Configuration Control

during Development 141

Build Tools 141
Productivity Gains with
CASE Technology 142
Chapter Review 144

For Further Reading 144
Key Terms 144
Problems 145
References 146

Learning Objectives 149
Quality Issues 150

6.1.1

6.1.2

Software Quality
Assurance 151
Managerial Independence 151

Non-Execution-Based Testing 152

6.2.1
6.2.2
6.2.3

Walkthroughs 153
Managing Walkthroughs 153
Inspections 154

