Martin J. Field

A Practical Introduction to the

Simulation of
Molecular Systems

Second Edition

‘o " i DT
v PERBRLANIT wom »-

- -

T www.wpepj.com.cp

A PRACTICAL INTRODUCTION
TO THE SIMULATION OF
MOLECULAR SYSTEMS

Second Edition

MARTIN J. FIELD

Institut de Biologie Structurale — Jean-Pierre Ebel,
Grenoble, France

S CAMBRIDGE

BEER&RE (CIP) ¥R

S TFARZEBA FAALT = A practical introduction to the simulation of molecular
systems: 2 MR: T/ (3E) JFE/REE (Field, M.J.) F. —RHF.
—Jbm. REB B RAFILRAT, 2014.8

ISBN 978 —7 — 5100 — 8443 -0

1.4 1.0 I O#STFEM—LFE—FKL N.O 063
[A 45 4R CIP BT (2014) 2 188056 5

H #: A Practical Introduction to the Simulation of Molecular Systems Second Edition
£ . Martin J. Field

hoE E: SOTFERRERNAAN 82 R

BERE: RE XX

H AR &F: HAREBHRAFRILRAF

R &: Z=WAEKEFARAA

& 17 HMAEBEMAFEIEAR (JERERKHAE 137 5 100010)
BEZHEIE: 010 -64021602, 010 - 64015659

BFEMH: kb@ wpchj. com. cn

7 *: 16 F

B . 225

R ®: 201541H

RRAEAE: B 01-2013 -4921

B: 978-7-5100-8443-0 E ;. 89.005T

A PRACTICAL INTRODUCTION TO THE
SIMULATION OF MOLECULAR SYSTEMS
Second Edition

Molecular simulation is a powerful tool in materials science, physics, biophysics,
chemistry, drug design and many other areas of research. This updated edition
provides a pragmatic introduction to a wide range of techniques for the simulation
of molecular systems at the atomic level. The first part of the book concentrates
on methods for calculating the potential energy of a molecular system, with
new chapters on quantum chemical, molecular mechanical and hybrid potential
techniques. The second part covers ways of investigating the conformational,
dynamical and thermodynamical properties of systems, discussing such techniques
as geometry-optimization, normal-mode analysis, and molecular dynamics and
Monte Carlo simulation.

Now employing Python, the second edition includes a wealth of examples and
program modules for each simulation technique. This allows readers to carry out
the calculations and to appreciate the inherent difficulties involved in each. This
is a valuable resource for researchers and graduate students wanting to know how
to perform atomic-scale molecular simulations.

Additional resources for this title, including the program library, technical

information and instructor-solutions, are available online at www.cambridge.org/
9780521852524.

MARTIN J. FIELD is Group Leader of the Laboratoire de Dynamique Moléculaire at
the Institut de Biologie Structurale — Jean-Pierre Ebel, Grenoble. He was awarded
his Ph.D. in Quantum Chemistry from the University of Manchester, UK, in 1985.
His areas of research include using molecular modeling and simulation techniques
to study biological problems. More specifically, his current interests are in the
development and application of hybrid potential techniques to study enzymatic
reaction mechanisms and other condensed phase processes.

Reviews of the first edition:

‘... a valuable teaching aid for those presenting this topic. It should be of interest
not only to the physical chemist, but also to those involved in computational
biophysics, biochemistry or molecular physics.” Scientific Computing World

‘... this book is a valuable addition to my shelf and one that I must make sure
doesn’t disappear because my research group has taken off with it!” Nell L. Allan.
Chemistry and Industry

Preface to the first edition

The reason that I have written this book is simple. It is the book that I would have
liked to have had when I was learning how to carry out simulations of complex
molecular systems. There was certainly no lack of information about the theory
behind the simulations but this was widely dispersed in the literature and I often
discovered it only long after I needed it. Equally frustrating, the programs to
which I had access were often poorly documented, sometimes not at all, and so
they were difficult to use unless the people who had written them were available
and preferably in the office next door! The situation has improved somewhat since
then (the 1980s) with the publication of some excellent monographs but these are
primarily directed at simple systems, such as liquids or Lennard-Jones fluids, and
do not address many of the problems that are specific to larger molecules.

My goal has been to provide a practical introduction to the simulation of
molecules using molecular mechanical potentials. After reading the book, readers
should have a reasonably complete understanding of how such simulations are
performed, how the programs that perform them work and, most importantly, how
the example programs presented in the text can be tailored to perform other types
of calculation. The book is an introduction aimed at advanced undergraduates,
graduate students and confirmed researchers who are newcomers to the field. It
does not purport to cover comprehensively the entire range of molecular simulation
techniques, a task that would be difficult in 300 or so pages. Instead, I have tried to
highlight some of the basic tasks that can be done with molecular simulations and
to indicate some of the many exciting developments which are occurring in this
rapidly evolving field. I have chosen the references which I have put in carefully
as I did not want to burden the text with too much information. Inevitably such a
choice is subjective and I apologise in advance to those workers whose work or
part of whose work I did not explicitly acknowledge.

There are many people who directly or indirectly have helped to make this
book possible and whom I would like to thank. They are: my early teachers in the

X

X Preface to the first edition

field of computational chemistry, Nicholas Handy at Cambridge and Ian Hillier
at Manchester; Martin Karplus and all the members of his group at Harvard (too
numerous to mention!) during the period 1985-9 who introduced me to molecular
dynamics simulations and molecular mechanics calculations; Bernie Brooks and
Rich Pastor, at the NIH and FDA, respectively, whose lively discussion and help
greatly improved my understanding of the simulations I was doing; and all the
members of my laboratory at the IBS, past and present, Patricia Amara, Dominique
Bicout, Celine Bret, Laurent David, Lars Hemmingsen, Konrad Hinsen, David
Jourand, Flavien Proust, Olivier Roche and Aline Thomas. Finally, special thanks
go to Patricia Amara and to Dick Wade at the IBS for comments on the manuscript,
to Simon Capelin and the staff of Cambridge University Press for their guidance
with the production of the book, to the Commissariat a I’Energie Atomique and
the Centre National de la Recherche Scientifique for financial support and to my
wife, Laurence, and to my sons, Mathieu and Jeremy, for their patience.

Martin J. Field
Grenoble, 1998

Preface to the second edition

This edition of A Practical Introduction has two major differences from the
previous one. The first is a discussion of quantum chemical and hybrid potential
methods for calculating the potential energies of molecular systems. Quantum
chemical approaches are more costly than molecular mechanical techniques but
are, in principle, more ‘exact’ and greatly extend the types of phenomena that
can be studied with the other algorithms described in the book. The second
difference is the replacement of FORTRAN 90 by Python as the language in which
the DYNAMO module library and the book’s computer programs are written. This
change was aimed to make the library more accessible and easier to use. As
well as these major changes, there have been many minor modifications, some of
which I wanted to make myself but many that were inspired by the suggestions
of readers of the first edition.

Once again, I would like to acknowledge my collaborators at the Institut de
Biologie Structurale in Grenoble and elsewhere for their comments and feed-
back. Special thanks go to all members, past and present, of the Laboratoire de
Dynamique Moléculaire at the IBS, to Konrad Hinsen at the Centre de Biophysique
Moléculaire in Orléans and to Troy Wymore at the Pittsburgh Supercomputing
Center. I would also like to thank Michelle Carey, Anna Littlewood and the staff
of Cambridge University Press for their help during the preparation of this edition,
Johny Sebastian from TechBooks for answers to my many I&TEX questions, and,
of course, my family for their support.

Martin J. Field
Grenoble, 2006

X1

A Practical Introduction to the Simulation of Molecular Systems Sec-
ond Edition (978-0-521-85252-4) by Martin J. Field, first published
by Cambridge

University Press 2007

All rights reserved.

This reprint edition for the People’s Republic of China is published
by arrangement with the Press Syndicate of the University of Cam-
bridge, Cambridge, United Kingdom.

© Cambridge University Press & Beijing World Publishing Corpora-
tion 2014

This book is in copyright. No reproduction of any part may take
place without the written permission of Cambridge University Press
or Beijing World Publishing Corporation.

This edition is for sale in the mainland of China only, excluding
Hong Kong SAR, Macao SAR and Taiwan, and may not be bought
for export therefrom.

HRARFEARIEAERAHE, FOEFE. BT
FTHXEPEEE, AMEHO,

Contents

Preface to the first edition page ix
Preface to the second edition Xi
1 Preliminaries 1
1.1 Introduction 1
1.2 Python 2
1.3 Object-oriented programming 5
1.4 The pDynamo library 8
1.5 Notation and units 9
2 Chemical models and representations 14
2.1 Introduction 14
2.2 The System class 14
2.3 Example 1 17
2.4 Common molecular representations 18
2.5 Example 2 27
3 Coordinates and coordinate manipulations 31
3.1 Introduction 31
3.2 Connectivity 31
3.3 Internal coordinates 35
3.4 Example 3 38
3.5 Miscellaneous transformations 41
3.6 Superimposing structures 45
3.7 Example 4 47
4 Quantum chemical models 51
4.1 Introduction 51
4.2 The Born—Oppenheimer approximation , 51
4.3 Strategies for obtaining energies on a potential energy surface 53

vi

Contents

4.4 Molecular orbital methods

4.5 The Hartree—Fock approximation
4.6 Analysis of the charge density

4.7 Example 5

4.8 Derivatives of the potential energy
4.9 Example 6

Molecular mechanics

5.1 Introduction

5.2 Typical empirical energy functions

5.3 Calculating a molecular mechanics energy
5.4 Example 7

5.5 Parametrizing potential energy functions
5.6 Soft constraints

Hybrid potentials

6.1 Introduction

6.2 Combining QC and MM potentials

6.3 Example 8

6.4 Covalent bonds between QC and MM atoms
6.5 Example 9

Finding stationary points and reaction paths on potential
energy surfaces

7.1 Introduction

7.2 Exploring potential energy surfaces
7.3 Locating minima

7.4 Example 10

7.5 Locating saddle points

7.6 Example 11

7.7 Following reaction paths

7.8 Example 12

7.9 Determining complete reaction paths
7.10 Example 13

Normal mode analysis

8.1 Introduction

8.2 Calculation of the normal modes

8.3 Rotational and translational modes

8.4 Generating normal mode trajectories

8.5 Example 14

8.6 Calculation of thermodynamic quantities
8.7 Example 15

54
56
67
70
74
78

81
81
81
93
101
103
105

110
110
110
114
116
120

122
122
122
126
129
130
134
136
139
140
144

148
148
148
153
156
158
161
165

Contents

9 Molecular dynamics simulations I

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Introduction
Molecular dynamics
Example 16
Trajectory analysis
Example 17
Simulated annealing
Example 18

10 More on non-bonding interactions

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8

Introduction

Cutoff methods for the calculation of non-bonding interactions
Example 19

Including an environment

Periodic boundary conditions

Example 20

Ewald summation techniques

Fast methods for the evaluation of non-bonding interactions

11 Molecular dynamics simulations II

11.1
11.2
11.3
11.4

11.5
11.6
11.7
11.8

Introduction

Analysis of molecular dynamics trajectories

Example 21

Temperature and pressure control in molecular dynamics
simulations

Example 22

Calculating free energies: umbrella sampling

Examples 23 and 24

Speeding up simulations

12 Monte Carlo simulations

12.1
12.2
12.3
12.4
12.5
12.6

Introduction

The Metropolis Monte Carlo method

Monte Carlo simulations of molecules

Example 25

Calculating free energies: statistical perturbation theory
Example 26

Appendix 1 The pDynamo library

Appendix 2 Mathematical appendix
A2.1 The eigenvalues and eigenvectors of a matrix
A2.2 The method of Lagrange multipliers

vii

170
170
170
178
182
184
186
189

195
195
195
205
209
212
215
217
223

225
225
225
233

235
244
246
252
258

262
262
262
266
277
280
286

294

298
298
300

viil Contents

Appendix 3 Solvent boxes and solvated molecules
A3.1 Example 27
A3.2 Example 28

Bibliography
Author index
Subject index

302
302
305

307
326
330

1

Preliminaries

1.1 Introduction

The aim of this book is to give a practical introduction to performing simulations
of molecular systems. This is accomplished by summarizing the theory underlying
the various types of simulation method and providing a programming library,
called pDynamo, which can be used to perform the calculations that are described.
The style of the book is pragmatic. Each chapter, in general, contains some theory
about related simulation topics together with descriptions of example programs.
that illustrate their use. Suggestions for further work (or exercises) are listed at
the end.

By the end of the book, readers should have a good idea of how to simulate
molecular systems as well as some of the difficulties that are involved. The
pDynamo library should also be a reasonably convenient starting point for those
wanting to write programs to study the systems they are interested in. The fact
that users have to write their own programs to do their simulations has advantages
and disadvantages. The major advantage is flexibility. Many molecular modeling
programs come with interfaces that supply only a limited range of options. In
contrast, the simulation algorithms in pDynamo can be combined arbitrarily and
much of the data generated by the program is available for analysis. The drawback
is that the programs have to be written — a task that many readers may not be
familiar with or have little inclination to do themselves. However, those who
fall into the latter category are urged to read on. pDynamo has been designed
to be easy to use and should be accessible to everyone even if they have only a
minimum amount of computing experience.

This chapter explains some essential background information about the pro-
gramming style in which pDynamo and the example programs are written. Details
of how to obtain the library for implementation on specific machines are left to
the appendices.

2 Preliminaries
1.2 Python

All the example programs in this book and much of the programming library
are written in the programming language Python. The rest of the library, which
most readers will never need to look at, consists of code for which computational
efficiency is paramount and is written in C. The reasons for the choice of Python
were threefold. First, it is a powerful and modern programming language that
is fun to use! Unlike languages such as C and FORTRAN, it is an interpreted
language, which means that programs can be run immediately without going
through separate compilation and linking steps. Second, Python is open-source
software that is free and runs under a wide variety of operating systems and, third,
there is a very active development community that is continually enhancing the
language and adding to its capabilities.

Most computer languages are easiest to learn by example and Python is no
exception. The following, simple program illustrates several basic features of the
language:

12# . Loop over the integers.
wtor i in values:

4.

= ‘x,loat (i)

Line 1 is the program’s documentation string which, in principle, should give
a concise description of what the program is supposed to do. All the
examples in this book, however, have documentation strings of the type
"""Example n.""" to save space and to avoid duplicating the expla-
nations that occur in the text.

Lines 2, 4, 8 and 11 are blank and are ignored.

1.2 Python 3

Line 3 makes the standard Python module math accessible to the program. Python
itself and programs written using Python — including pDynamo — consist
of modules which must be explicitly imported if their contents are to be
used.

The import statement has a number of different forms and the one
shown is the simplest. With this form, module items are accessed by
prefixing the item’s name with the module name, followed by a dot (.)
character. Thus, the function sqrt from the module math, which is used
on line 15 of the program, is accessed as math.sqgrt. An alternative
form, which is sometimes preferable, is from math import sqgrt.
This makes it possible to refer to the function sqrt by its name only
without the math. prefix.

Lines 5, 9 and 12 are comments which are included to make the program easier
to understand. Python ignores all characters from the hash character (#)
until the end of the line.

Lines 67 define a very simple Python function. Functions are named collections
of instructions that can be called or invoked at different points in a
program. They behave similarly in Python to functions in other languages,
such as C and FORTRAN.

Line 6 is the function definition line. It starts with the word def which
tells Python that a function definition is coming and terminates with a
colon (:). The second word on the line, Square, is the name that we are
giving to the function and this is followed by the function’s arguments
which appear in parentheses. Arguments are variables that the function
needs in order to work. Here there is only one, x, but there can be many
more. :

The function definition line is followed by the body of the function. This
would normally consist of several lines but here there is only one, line 7.
Python is unusual among programming languages in that the lines in the
function body are determined by line indentation. In other languages, such
blocks of code are delimited by specific characters, such as the matching
braces {...} of C or the FUNCTION ... END FUNCTION keywords of
ForTRAN 90. The number of spaces to indent by is arbitrary — in this book
it is always four — but all lines must be indented by the same amount
and instructions after the end of the function must return to the original
indentation level.

Line 7 is very simple. The second part of the line contains the expression
x**2 which computes the square of the function’s argument x. The **
symbol denotes the power operator and so the expression tells Python
to raise x to the power of 2. The first part of the line is the keyword

4 Preliminaries

return which says that the result of the squaring calculation is to be
returned to the place from which the function was called.

Line 10 is the first executable line of the example and illustrates several more
features of the Python language — built-in functions, sequence types and
variable assignment. range is one of Python’s built-in functions and
is always available whenever the Python interpreter is invoked. It pro-
duces a sequence of integers, in this case ten of them, starting with
the value 0 and finishing with the value 9. Python, like C, but unlike
FORTRAN, starts counting from zero and not from one. The integers are
returned as a list which is one of Python’s built-in sequence data types
and is one of the things that makes Python so attractive to use. Finally
the list of integers is assigned to a variable with the name values.
Python differs from many languages in that variables do not need to
be declared as being of a particular type. In C, for example, an integer
variable would have to be declared with a statement such as “int i
;7 before it could be used. These declarative statements do not exist in
Python and so values can be assigned arbitrarily to refer to any data
type.

Line 13 shows one of the forms of iteration in Python. The statement takes the
list referred to by values and assigns each of its elements to the variable
i in turn. The iteration stops when the end of the list is reached. The
lines over which iteration is to occur are determined by line identation in
exactly the same way as those in the body of a function.

Line 14 is the first line of the loop specified by the for construct in line /3. It
takes the integer referred to by the variable i, converts it to a floating-
point number using the built-in function £1loat and then assigns it to the
variable x.

Line 15 is printed as two lines in the text, due to the restricted page width, but
it is logically a single statement. The presence of the backslash character
(\) at the end of the line indicates to Python that the subsequent line is
to be treated as a continuation of the current one.

The statement prints the values of i and of x, the square root of x, which
is calculated by invoking the function sqgrt from the module math,
and the square of x, calculated using the previously defined function
Square. These items are grouped together at the end of the line in a
tuple. Tuples, like lists, are one of Python’s built-in sequence data types
and are constructed by enclosing the items that are to be in the tuple in
parentheses. Tuples differ from lists, though, in that they are immutable,
which means that their contents cannot be changed once they have been
created.

1.3 Object-oriented programming 5

The style in which the quantities are printed is determined by the
formatting string, which is enclosed in double quotes " ". This is placed
after the print keyword and is separated from the tuple of items to
be printed by the % character. Python employs a syntax for formatting
operations that is very similar to that of the C language. Output fields start
with a % character and so, in this example, there are four output fields in
the string, one for each of the items to be printed. The first output field is
$5d, which says that an integer, coded for by the letter d, is to be printed
in a field 5 characters wide. The remaining fields are identical and have
the form %10.5f£. They are for the output of floating-point numbers (£)
in fields 10 characters wide but with 5 of these characters occurring after
the decimal point.

It is not, of course, possible to master a language from a single, short program
but readers should gain in expertise and come to appreciate more fully the capa-
bilities of the language as they work through the examples and exercises in the
book. One of the great advantages of Python for learning is that it can be used
interactively and so it is quick and easy to write simple programs to test whether
one really understands what the language is doing.

1.3 Object-oriented programming

Python admits various programming styles but all the modules in pDynamo are
written using an object-oriented approach in which the basic unit of programming
is the class. A class encapsulates the notion of an object, such as a file or a
molecule, and groups together the data or artributes needed to describe the object
and the functions or methods that are 'required to manipulate it. Classes are used
by instantiating them so that, for example, a program for modeling the molecules
methanol and water would create two instances of the class molecule, one to
represent methanol and one water.

There are other important aspects of object-oriented programming that
pDynamo employs but which will only be alluded to briefly, if at all, later on.
Two of these are inheritance and polymorphism. Inheritance is the mechanism
by which a new class is defined in terms of an existing one. For example,
a class for manipulating organic molecules could be derived from a more
general class for molecules. The new class would inherit all the attributes
and methods defined by its parent class but would also have attributes and
methods specific for organic molecules. Polymorphism is related to inheritance
and is the ability to redefine methods for derived classes. Thus, the general
molecule class could have a method for chemical reactions but this would

