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Preface

In general, all solid materials can be considered as non-homogeneous because their prop-
erties can vary with locations in a three-dimensional space. One special type of solid ma-
terial is characterized by the variations of its physical and mechanical components, struc-
tures and properties along only one given coordinate; the material properties have very
small or no variations in any other direction perpendicular to the given coordinate. These
types of solid materials are called functionally graded materials (FGMs). For example,
plant and tree stems, animal bones and other biological hard tissues have gradient varia-
tions in their microstructures and functions. Bamboo is a self-optimizing graded structure
constructed with a cell-based system for sensing external mechanical stimuli. Learning
from nature, material scientists have increasingly aimed to design and fabricate graded
materials that are more damage-resistant than their conventional homogeneous counter-
parts. As a design concept, FGMs were originally proposed as an alternative to conven-
tional ceramic thermal barrier coatings to overcome their well-documented shortcomings
and to meet the demands of new technologies.

The mechanical responses of FGMs have an important significance in many engineer-
ing fields and are of great interest to material scientists, and design and manufacturing
engineers. The problems of fracture and crack propagation in FGMs are particularly im-
portant and have been studied in depth. The boundary element method (BEM), also known
as the boundary integral equation method, is now firmly established in many engineering
disciplines and is increasingly used as an effective and accurate numerical tool. Fracture
mechanics has been the most active, specialized area of research in BEM and is prob-
ably the one most exploited by industry. The traditional BEM is based on the Kelvin’s
fundamental solution and meets the difficulties encountered when analyzing the fracture
mechanics of FGMs.

Since 1983, the second author of this book has devoted much of his research to under-
standing the elasticity of a multilayered medium and has achieved important results. One
of these results is the analytical and closed-form formulation of fundamental solutions for
a multilayered elastic medium and a transversely isotropic bi-material. These solutions
can be applied to investigate and analyze many problems in multilayered media encoun-
tered in the science and engineering disciplines using the BEM. Since 2000, the authors
have dedicated their efforts to the development of the new BEMs based on these funda-
mental solutions under the funding of The University Grants Committee of Hong Kong,
The University of Hong Kong and the National Natural Science Foundation of China.

This book brings together the descriptions of the new boundary element formulation
based on the two fundamental solutions and new analyses and results for the fracture me-
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chanics of layered and functionally graded materials. This method overcomes the mathe-
matical degeneration that is associated with the solitary use of the displacement boundary
integral equation for cracked bodies by developing the multi-region and single-region
methods of BEMs. Effective implementation of the methods is detailed, devoting special
attention to the description of accurate algorithms for the evaluation of various singu-
lar integrals in the boundary element formulations. The layered discretization technique
is used to simulate the variations of the material property of FGMs with depth. The pro-
posed numerical methods, together with fracture mechanics theories, are used to calculate
the stress intensity factors of three-dimensional cracks in FGMs and to analyze the crack
growth. The influence of the material parameters and crack dimensions on the fracture
properties has been analyzed and quantified. The new material presented in this book is

supported by recent articles published in relevant peer-reviewed journals in English or
Chinese.

Hongtian Xiao, Zhongqi Yue
September 1st, 2013
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Chapter 1

Introduction

1.1 Functionally graded materials

The homogeneity of solid materials represents the distribution rule of physical and me-
chanical properties at each point within their occupied space. The physical and mechani-
cal properties of a homogeneous material are spatially constant, namely, they are identical
at each point within its occupied space. The physical and mechanical properties of a het-
erogeneous material on the other hand are spatially variable, having different values at
different points. A homogeneous material is an ideal case of a heterogeneous material.

At micro and nano scales, any natural material shows non-uniformity and heterogene-
ity. However, at meso and macro scales, many engineering materials can be assumed to
be homogeneous. This assumption is a first-order average approximation to represent en-
gineering materials in mathematical and physical models and plays an important role in
solving the corresponding physical and mechanical problems. In recent years, many new
materials have been designed, developed and used, and their physical and mechanical
properties have been extensively tested. The heterogeneity of materials at the meso and
macro scales has become much more important in analyzing and predicting the mechani-
cal responses and failures of these new materials. It is well known that the heterogeneity
of materials plays a key role in practical problems; it is therefore necessary to make a
second-order average approximation based on the first-order approximation of the tradi-
tional properties of materials in mathematical and physical models. This further approxi-
mation is necessary in order to meet the actual design requirements.

Amongst natural and synthetic materials, one type of natural or synthetic materials has
their physical and mechanical properties variable along a given coordinate and keeping
constant along the other two coordinates perpendicular to the given coordinate. Such ma-
terials are called functionally graded materials (FGMs) and can be regarded as a special
type of general heterogeneous material that meets the requirements of the second-order
average approximation.

Plant and tree stems, animal bones and other biological hard tissues have gradient
variations of microstructures and functions in depth. After examining the ingenious bio-
logical construction of bamboo, Nogata and Takahashi (1995) concluded that bamboo is a
self-optimizing graded structure constructed with a cell-based sensing system for external
mechanical stimuli. Such graded structures can also be seen in the gradual changes ob-
served in the elastic properties of sands, soils, and rocks beneath the Earth’s surface that
control the settlement and stability of structural foundations, plate tectonics, and the ease
of drilling into the ground (Suresh, 2001). In-situ surveys show that the elastic modulus
of a specific type of soil can be approximated by the function E = EyzX, where E is the
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elastic modulus of a homogeneous soil, and z is the depth beneath the ground surface and
0 <k < 1. When k = 1, the soil is referred to as a Gibson soil (Gibson, 1967). Figure 1.1
illustrates the structure of a typical layered pavement system (Yue and Yin, 1998). Ac-
cording to the composition and structure of the materials, this pavement system can be
divided into four layers (Fig. 1.1a) and the elastic modulus of each layer varies with depth
(Fig. 1.1b).
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(a) A typical layered pavement system (b) Piecewise variation of elastic moduli of the

structural layers with depth

Fig. 1.1 Structural layers of asphalt concrete pavement with variable elastic moduli in depth

Learning from nature, material scientists have increasingly designed and engineered
graded materials that are more oriented to be damage-resistant than their conventional
homogeneous counterparts. Historically, people understood that the variations of struc-
tures and composites of materials along one direction can enhance the material properties
and lower the cost. Early examples of the use of synthetic materials with graded proper-
ties can be traced back to the manufacture of blades for steel swords that used a graded
transition from a softer and tougher core to a hardened edge. However, the theoretical
understanding of such phenomena has not received much attention due to the difficulties
encountered in analytical and mathematical analyses.

As a new design concept in recent years, FGMs were originally proposed as an alterna-
tive to conventional thermal barrier ceramic coatings to overcome their well-documented
shortcomings and to meet the demands of new technologies, particularly in microelec-
tronics, aerospace and high temperature applications. We can use the engine of the space
shuttle as an example to illustrate this concept: The exterior surface of an engine has to
withstand high temperatures, so ceramic is used to efficiently shield against thermal con-
ductivity while on the interior surface a cooling gas is required to keep the engine at an
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optimal working temperature, which requires the use of a metal with good thermal con-
ductivity, high strength and toughness. The composition profile of materials in the interfa-
cial zone varies from 0% metal near the outer surface to help withstand the high temper-
ature to 100% metal near the inner surface in contact with the cooling gas. The resulting
non-homogeneous material exhibits the desired thermomechanical properties. Other ap-
plications of FGMs include interfacial zones to improve bonding strength and reduce the
residual and thermal stresses in bonded dissimilar materials and wear resistant layers in
such components as gears, ball and roller bearings, cams and machine tools (Erdogan,
1995).

The mechanical responses of FGMs are especially important in many engineering
fields and are of great interest to material scientists, and design and manufacturing en-
gineers. Birman and Byrd (2007) reviewed the principal developments in various aspects
of theories and applications of FGMs. They include the following:

(1) Approaches to homogenization of a particulate-type FGM.

(2) Heat transfer problems where only the temperature distribution is determined.

(3) Mechanical response to static and dynamic loads including thermal stress.

(4) Optimization of heterogeneous FGM.

(5) Manufacturing, design, and modeling aspects of FGM.

(6) Testing methods and results.

(7) FGM applications.

(8) Fracture and crack propagation in FGM.

The problem of fracture in FGMs is extremely important and has been studied in
depth. Birman and Byrd (2007) listed several recent papers that illustrate the variety and
complexity of fracture problems.

1.2 Methods for fracture mechanics

1.2.1 General

Graded materials have complex fracture mechanisms because of the variations in the com-
position, structure, and mechanical properties of FGMs. At the meso and macro scales,
crack-like flaws exert an important influence on the mechanical properties of FGM struc-
tures. Erdogan (2000) proposed that some of the following research into the fracture me-
chanics is needed:

(1) Three-dimensional corner singularities in bonded dissimilar materials.

(2) Determination of local residual stresses in bonded anisotropic solids and their effect
on crack initiation.

(3) Three-dimensional periodic surface cracking and crack propagation in coatings.

(4) The effect of temperature dependence of the thermo mechanical parameters in lay-
ered materials undergoing thermal cycling and thermal shock.

(5) The effect of material and geometric nonlinearities on spallation.
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(6) Crack tip singularities in inelastic graded materials.

(7) Crack tip behavior in graded materials — additional nonsingular terms.

(8) Developing methods for fracture characterization of FGMs at room and elevated
temperatures.

The research methods used to investigate the fracture mechanics of FGMs include
both analytical and numerical methods. The analytical methods use the singular integral
equation method, etc. while numerical methods include the finite element method, the
boundary element method, meshless methods, etc.

1.2.2 Analytical methods

Many analytical investigations of crack problems in FGMs have been conducted. Delale
and Erdogan (1983) analyzed the crack problem for a non-homogeneous plane where the
Poisson’s ratio is in the product form of linear and exponential functions and the elas-
tic modulus varies exponentially with the coordinate; it was found that the effect of the
Poisson’s ratio is somewhat negligible. Delale and Erdogan (1988) considered an inter-
face crack between two bonded half planes where one of the half planes is homogeneous
and the second is non-homogeneous in such a way that the elastic properties are continu-
ous throughout the plane and have discontinuous derivatives along the interface. The re-
sults lead to the conclusion that the singular behavior of stresses in the non-homogeneous
medium is identical to that in a homogeneous material provided that the spatial distribu-
tion of material properties is continuous near and at the crack tip. Ozturk and Erdogan
(1996) considered a penny-shaped crack in homogeneous dissimilar materials bonded
through an interfacial region with graded mechanical properties and subject to axisym-
metric but otherwise arbitrary loads. Pei and Asaro (1997) analyzed a semi-infinite crack
in a strip of an isotropic FGM under edge loading and in-plane deformation conditions. Jin
and Paulino (2002) studied a crack in a viscoelastic strip of a FGM under tensile loading
conditions. Meguid et al. (2002) investigated the singular behavior of a propagating crack
in a FGM with spatially varying elastic properties under plane elastic deformation and
examined the effect of the gradient of material properties and the speed of crack propaga-
tion upon the stress intensity factors, the strain energy release rate and the crack opening
displacement.

In the above analyses it is assumed that the elastic properties are given as simple func-
tions. In most cases, the elastic properties of the FGMs are described by exponential func-
tions while in other cases they are described by power functions. Only in these simplified
cases can the analytical solutions of some crack problems in FGMs be obtained. For three-
dimensional crack problems in FGMs, only penny-shaped cracks under axisymmetric but
otherwise arbitrary or torsional loads are analyzed in closed forms (Ozturk and Erdogan,
1995, 1996). In their analyses, the shear modulus of the FGM is also described by an
exponential function.



