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When computer software succeeds—when it meets the needs of the people who
use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, software engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study, and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the quality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature of the software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed,
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner's Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it, is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant software engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor, and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’'s Approach.

The Eighth Edition. The 39 chapters of the eighth edition are organized into five
parts. This organization better compartmentalizes topics and assists instructors who
may not have the time to complete the entire book in one term.
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Part 1, The Process, presents a variety of different views of software process, consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Pattern-
based design and design for Web and mobile applications are also considered. Part 3,
Quality Management, presents the concepts, procedures, techniques, and methods
that enable a software team to assess software quality, review software engineering
work products, conduct SQA procedures, and apply an effective testing strategy and
tactics. In addition, formal modeling and verification methods are also considered.
Part 4, Managing Software Projects, presents topics that are relevant to those who
plan, manage, and control a software development project. Part 5, Advanced Topics,
considers software process improvement and software engineering trends. Continu-
ing in the tradition of past editions, a series of sidebars is used throughout the book to
present the trials and tribulations of a (fictional) software team and to provide supple-
mentary materials about methods and tools that are relevant to chapter topics.

The five-part organization of the eighth edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be
built around one or more of the five parts. A software engineering survey course
would select chapters from all five parts. A software engineering course that empha-
sizes analysis and design would select topics from Parts 1 and 2. A testing-oriented
software engineering course would select topics from Parts 1 and 3, with a brief foray
into Part 2. A “management course” would stress Parts 1 and 4. By organizing the
eighth edition in this way, we have attempted to provide an instructor with a number
of teaching options. In every case the content of the eighth edition is complemented
by the following elements of the SEPA, 8/e Support System.

Student Resources. A wide variety of student resources includes an extensive on-
line learning center encompassing chapter-by-chapter study guides, practice quizzes,
problem solutions, and a variety of Web-based resources including software engineer-
ing checklists, an evolving collection of “tiny tools,” a comprehensive case study, work
product templates, and many other resources. In addition, over 1,000 categorized Web
References allow a student to explore software engineering in greater detail and a
Reference Library with links to more than 500 downloadable papers provides an in-
depth source of advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the eighth edition. These include a complete online Instructor’'s Guide
(also downloadable) and supplementary teaching materials including a complete set
of more than 700 PowerPoint Slides that may be used for lectures, and a test bank. Of
course, all resources available for students (e.g, tiny tools, the Web References, the
downloadable Reference Library) and professionals are also available.

The Instructor's Guide for Software Engineering: A Practitioner’s Approach pres-
ents suggestions for conducting various types of software engineering courses, rec-
ommendations for a variety of software projects to be conducted in conjunction with a
course, solutions to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists,
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a catalog of software engineering tools, a comprehensive collection of Web-based re-
sources, and an “adaptable process model” that provides a detailed task breakdown
of the software engineering process.

Cormect- McGraw-Hill Connect® Computer Science provides

online presentation, assignment, and assessment solu-
|COMPUTER SCIENCE

tions. It connects your students with the tools and
resources they’ll need to achieve success. With Connect Computer Science you can
deliver assignments, quizzes, and tests online. A robust set of questions and activi-
ties are presented and aligned with the textbook's learning outcomes. As an instruc-
tor, you can edit existing questions and author entirely new problems. Integrate
grade reports easily with Learning Management Systems (LMS), such as WebCT and
Blackboard—and much more. ConnectPlus® Computer Science provides students
with all the advantages of Connect Computer Science, plus 24/7 online access to a
media-rich eBook, allowing seamless integration of text, media, and assessments. To
learn more, visit www.mcgrawhillconnect.com

BLEARNSMAR T MCrawiilLeamSmare s avai-

able as a standalone product or
an integrated feature of McGraw-Hill Connect Computer Science. It is an adaptive
learning system designed to help students learn faster, study more efficiently, and
retain more knowledge for greater success. LearnSmart assesses a student’s knowl-
edge of course content through a series of adaptive questions. It pinpoints concepts
the student does not understand and maps out a personalized study plan for success.
This innovative study tool also has features that allow instructors to see exactly what
students have accomplished and a built-in assessment tool for graded assignments.
Visit the following site for a demonstration. www.mhlearnsmart.com

n | S M /_\ R T B D D K ™ Powered by the intelligent and adap-

tive LearnSmart engine, SmartBook™
is the first and only continuously adaptive reading experience available today. Distin-
guishing what students know from what they don’t, and honing in on concepts they
are most likely to forget, SmartBook personalizes content for each student. Reading
is no longer a passive and linear experience but an engaging and dynamic one, where
students are more likely to master and retain important concepts, coming to class
better prepared. SmartBook includes powerful reports that identify specific topics
and learning objectives students need to study.

When coupled with its online support system, the eighth edition of Software
Engineering: A Practitioner’'s Approach, provides flexibility and depth of content that
cannot be achieved by a textbook alone.

With this edition of Software Engineering: A Practitioner’s Approach, Bruce Maxim
joins me (Roger Pressman) as a coauthor of the book. Bruce brought copious software
engineering knowledge to the project and has added new content and insight that will
be invaluable to readers of this edition.

Acknowledgments. Special thanks go to Tim Lethbridge of the Universiiy of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable.
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In addition, we'd like to thank Austin Krauss, Senior Software Engineer at Treyarch,
for providing insight into software development in the video game industry. We also
wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of
Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University;
and Dean Mathias, Utah State University. Their in-depth comments and thoughtful
criticism have helped us make this a much better book.

Special Thanks. BRM: I am grateful to have had the opportunity to work with Roger
on the eighth edition of this book. During the time I have been working on this book
my son Benjamin shipped his first MobileApp and my daughter Katherine launched
her interior design career. I am quite pleased to see the adults they have become.
I am very grateful to my wife, Norma, for the enthusiastic support she has given me as
I filled my free time with working on this book.

RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. They now have
children of their own, Maya and Lily, who start still another generation. Both girls are
already wizards on mobile computing devices. Finally, to my wife Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still
another edition of “the book.”

Roger S. Pressman
Bruce R. Maxim
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