+& s

e

=g

Tif e
IO
=N

e —————— - ——

00090

%Pk TR

LEEHHARFE

(2) Roger S. Pressman Bruce R. Maxim #

(ZFHooR - FHxkoht)

Bt T b B ORR A

China Machine Press

Software Engineering
A PRACTITIONER'S APPROACH

- Roger S. N
PRESSMAN S

Bruce R.
MAXIM

£ P TR

LEBRENTRFE
(Z30hR - Z8hR)

///// are CrRneer iy
A Practitioner’s Approach (Eighth Edition)

_ (%) Roger S. Pressman Bruce R. Maxim

EHEMmS&E (CIP) #iE

TR SCEREINFRGE (R -$E 8 M) / () E3EEE (Pressman, R. S.),
(2) DI (Maxim, B. R.) & . —dtm: YT HARAE, 2015.1

(ZBUFERRAE) _
4By Software Engineering: A Practitioner’s Approach, Eighth"Edition

ISBN 978-7-111-48950-4
LR LD @D I H&EITE-Fx IV. TP311.5
hE AR E CIP ##E+ (2014) 55 307858 &

AHFENEIES: EF: 01-2014-6189

Roger S. Pressman, Bruce R. Maxim : Software Engineering: A Practitioner’s Approach,
Eighth Edition (ISBN 978-0-07-802212-8).

Copyright © 2015 by McGraw-Hill Education.

All Rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including without limitation photocopying,
recording, taping, or any database, information or retrieval system, without the prior written
permission of the publisher.

This authorized Bilingual edition is jointly published by McGraw-Hill Education and China
Machine Press. This edition is authorized for sale in the People's Republic of China only,
excluding Hong Kong, Macao SAR and Taiwan.

Copyright © 2015 by McGraw-Hill Education and China Machine‘Press.

AAZIIGERR HERRSE - F/R (TN) 2E HRA TRV T e S E AR, A BRAE
fE NREFEERN (FEEEE., B IEITHRREEE) 4. REFTZHO, WEREFRGE,
Bk HIRR.

R HME TS BEIFE, AMELUEASRE RSB A EFR S .

AFETENA McGraw-Hill ATGRE, FTiREETENE.

HER&ETT: WU T bR PR E R REAHT 22 2 WBE4R6S: 100037)

RiERE: RIRE THERNS . EEEW

B Wl JbETSRERGERIERAR Me K. 20154 2 A% 1 k% 1 IXEIR
F A: 186mmx240mm 1/16 Bl 3K: 60.5

F S: ISBN 978-7-111-48950-4 E fr: 119.00 7T

FAF, AT, #R, BR, HARLATHAR
FMR#4: (010) 88378991 88361066 H#AH# 4 (010) 88379604
wH#&. (010) 68326294 88379649 68995259 E#4EM: hzjsj@hzbook.com

WBALFRE - BRSR
HR B AR A B
AR EAEE: AFEXRATESA L/ A

EhRE 8IS

ALK, B AR AZE ST R EARRE, 785 EREBRBENENM
BHAG T ZERERES; BERXFENRE, EXEEREERERNATSERZREL . MO
W, ErlieitEEs, XEMN™ LA SEERERBRETHES, HEVFERRHFEZELD
3} E S B AR BCE R RATL, RIS MR, AR TR TEsE, BIERT
FARMVEAE, BEEMEEARMNE, XAFEEME, HMEIFASEER B3R .

A, E2KERARFNHES T, REMHTEILRRRE, LU AAKTERA KA
Pl E3HTEVEE R RAAEEIE, Rk MELEMNBREHFTRE EEERE
BE, EREGFEEARARRENEBEOIHRT, EESEEERELITEIRERREK L4 E R
MR REUEMA T ZEBEEZL . B, 513 —H#tEIMESTHEVLEA KR BB
HEFVMEAREIFRROENER, BE2SHAEN . BREEMHFR R KENLHEZE.

PULAR ok tE p At e B A AR R EIRE “HREABERS" - BI1998FEF 1, AT TIE
HAUE Tk . BIFEIIMLFEAM L. @3 ZFNARMSE S, Ri15Pearson, McGraw-Hill,
Elsevier, MIT, John Wiley & Sons, Cengage 5ttt A EZ HMATENL T BHFHESIEXLER, Mibi]
A B9 BCE Fh#R 8k HH Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis
Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz,
William Stallings, Donald E. Knuth, John L. Hennessy, Larry L. Peterson®s K42 & i) —#t 28 gk
i, LAOCHHREALBREAR” HEFRIAR, SiEHEYS . TREAREK. KEASEMHm, twiEE#R
T X ENAT) A A

“HHEUEEAR” MER TSR TEASEENRIHEE, BERRNERANEETHE
EEEHE T, AT e T BIFEME AN T/E; mMERBAESOAYCEEESEPEBE
%, ANELITHEBNPERERF. 24, “HREIREAR ESHRTERE MR, X
PEAEEPROL T REFM O, HHIFZEERANEXBEMMSERBE., HEOM “SHFR
FEE" VE i ikt B EOR B £ SC i AGE BF MR TR A

BURMIIER . MMM . —WAIFEE . THBROFER. BHMSHE, XEERERMNVEBEAE
THEMRIIE. BEEITEVRE SERL RO AW T EMBEMUENZETERIL, HERT
E MR 77 RN HER AP FR R, RITOERRERERE, MIXBPERLIER
FATERX — LR B EERH B, REA R R FAEE TR TERBBUESRA TIE,
FATBBR R I EAT -

EZEM L. www.hzbook.com

B FHB{4 . hzjsj@hzbook.com =
BXREiE. (010) 88379604 HZ BOOKs |
BRI LFTERETF AL]S L3 L4

BB 100037 AR B b

When computer software succeeds—when it meets the needs of the people who
use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, software engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study, and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the quality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature of the software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed,
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner's Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it, is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant software engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor, and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’'s Approach.

The Eighth Edition. The 39 chapters of the eighth edition are organized into five
parts. This organization better compartmentalizes topics and assists instructors who
may not have the time to complete the entire book in one term.

PREFACE v

Part 1, The Process, presents a variety of different views of software process, consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Pattern-
based design and design for Web and mobile applications are also considered. Part 3,
Quality Management, presents the concepts, procedures, techniques, and methods
that enable a software team to assess software quality, review software engineering
work products, conduct SQA procedures, and apply an effective testing strategy and
tactics. In addition, formal modeling and verification methods are also considered.
Part 4, Managing Software Projects, presents topics that are relevant to those who
plan, manage, and control a software development project. Part 5, Advanced Topics,
considers software process improvement and software engineering trends. Continu-
ing in the tradition of past editions, a series of sidebars is used throughout the book to
present the trials and tribulations of a (fictional) software team and to provide supple-
mentary materials about methods and tools that are relevant to chapter topics.

The five-part organization of the eighth edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be
built around one or more of the five parts. A software engineering survey course
would select chapters from all five parts. A software engineering course that empha-
sizes analysis and design would select topics from Parts 1 and 2. A testing-oriented
software engineering course would select topics from Parts 1 and 3, with a brief foray
into Part 2. A “management course” would stress Parts 1 and 4. By organizing the
eighth edition in this way, we have attempted to provide an instructor with a number
of teaching options. In every case the content of the eighth edition is complemented
by the following elements of the SEPA, 8/e Support System.

Student Resources. A wide variety of student resources includes an extensive on-
line learning center encompassing chapter-by-chapter study guides, practice quizzes,
problem solutions, and a variety of Web-based resources including software engineer-
ing checklists, an evolving collection of “tiny tools,” a comprehensive case study, work
product templates, and many other resources. In addition, over 1,000 categorized Web
References allow a student to explore software engineering in greater detail and a
Reference Library with links to more than 500 downloadable papers provides an in-
depth source of advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the eighth edition. These include a complete online Instructor’'s Guide
(also downloadable) and supplementary teaching materials including a complete set
of more than 700 PowerPoint Slides that may be used for lectures, and a test bank. Of
course, all resources available for students (e.g, tiny tools, the Web References, the
downloadable Reference Library) and professionals are also available.

The Instructor's Guide for Software Engineering: A Practitioner’s Approach pres-
ents suggestions for conducting various types of software engineering courses, rec-
ommendations for a variety of software projects to be conducted in conjunction with a
course, solutions to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists,

Vi

PREFACE

a catalog of software engineering tools, a comprehensive collection of Web-based re-
sources, and an “adaptable process model” that provides a detailed task breakdown
of the software engineering process.

Cormect- McGraw-Hill Connect® Computer Science provides

online presentation, assignment, and assessment solu-
|COMPUTER SCIENCE

tions. It connects your students with the tools and
resources they’ll need to achieve success. With Connect Computer Science you can
deliver assignments, quizzes, and tests online. A robust set of questions and activi-
ties are presented and aligned with the textbook's learning outcomes. As an instruc-
tor, you can edit existing questions and author entirely new problems. Integrate
grade reports easily with Learning Management Systems (LMS), such as WebCT and
Blackboard—and much more. ConnectPlus® Computer Science provides students
with all the advantages of Connect Computer Science, plus 24/7 online access to a
media-rich eBook, allowing seamless integration of text, media, and assessments. To
learn more, visit www.mcgrawhillconnect.com

BLEARNSMAR T MCrawiilLeamSmare s avai-

able as a standalone product or
an integrated feature of McGraw-Hill Connect Computer Science. It is an adaptive
learning system designed to help students learn faster, study more efficiently, and
retain more knowledge for greater success. LearnSmart assesses a student’s knowl-
edge of course content through a series of adaptive questions. It pinpoints concepts
the student does not understand and maps out a personalized study plan for success.
This innovative study tool also has features that allow instructors to see exactly what
students have accomplished and a built-in assessment tool for graded assignments.
Visit the following site for a demonstration. www.mhlearnsmart.com

n | S M /_\ R T B D D K ™ Powered by the intelligent and adap-

tive LearnSmart engine, SmartBook™
is the first and only continuously adaptive reading experience available today. Distin-
guishing what students know from what they don’t, and honing in on concepts they
are most likely to forget, SmartBook personalizes content for each student. Reading
is no longer a passive and linear experience but an engaging and dynamic one, where
students are more likely to master and retain important concepts, coming to class
better prepared. SmartBook includes powerful reports that identify specific topics
and learning objectives students need to study.

When coupled with its online support system, the eighth edition of Software
Engineering: A Practitioner’'s Approach, provides flexibility and depth of content that
cannot be achieved by a textbook alone.

With this edition of Software Engineering: A Practitioner’s Approach, Bruce Maxim
joins me (Roger Pressman) as a coauthor of the book. Bruce brought copious software
engineering knowledge to the project and has added new content and insight that will
be invaluable to readers of this edition.

Acknowledgments. Special thanks go to Tim Lethbridge of the Universiiy of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable.

PREFACE vii

In addition, we'd like to thank Austin Krauss, Senior Software Engineer at Treyarch,
for providing insight into software development in the video game industry. We also
wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of
Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University;
and Dean Mathias, Utah State University. Their in-depth comments and thoughtful
criticism have helped us make this a much better book.

Special Thanks. BRM: I am grateful to have had the opportunity to work with Roger
on the eighth edition of this book. During the time I have been working on this book
my son Benjamin shipped his first MobileApp and my daughter Katherine launched
her interior design career. I am quite pleased to see the adults they have become.
I am very grateful to my wife, Norma, for the enthusiastic support she has given me as
I filled my free time with working on this book.

RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. They now have
children of their own, Maya and Lily, who start still another generation. Both girls are
already wizards on mobile computing devices. Finally, to my wife Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still
another edition of “the book.”

Roger S. Pressman
Bruce R. Maxim

ABOUT THE AUTHORS

Roger S. Pressman is an internationally recognized consultant and author in soft-
ware engineering. For more than four decades, he has worked as a software engi-
neer, a manager, a professor, an author, a consultant, and an entrepreneur.

Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting
firm that specializes in helping companies establish effective software engineer-
ing practices. Over the years he has developed a set of techniques and tools that
improve software engineering practice. He is also the founder of Teslaccessories,
LLC, a start-up manufacturing company that specializes in custom products for
the Tesla Model S electric vehicle.

Dr. Pressman is the author of nine books, including two novels, and many techni-
cal and management papers. He has been on the editorial boards of IEEE Software
and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He has presented tutorials at the International Conference on Soft-
ware Engineering and at many other industry meetings. He has been a member of
the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

Bruce R. Maxim has worked as a software engineer, project manager, professor,
author, and consultant for more than thirty years. His research interests include
software engineering, human computer interaction, game design, social media,
artificial intelligence, and computer science education.

Dr. Maxim is associate professor of computer and information science at the
University of Michigan—Dearborn. He established the GAME Lab in the College
of Engineering and Computer Science. He has published a number of papers on
computer algorithm animation, game development, and engineering education.
He is coauthor of a best-selling introductory computer science text. Dr. Maxim
has supervised several hundred industry-based software development projects
as part of his work at UM-Dearborn.

Dr. Maxim’s professional experience includes managing research informa-
tion systems at a medical school, directing instructional computing for a medical
campus, and working as a statistical programmer. Dr. Maxim served as the chief
technology officer for a game development company.

Dr. Maxim was the recipient of several distinguished teaching awards and a
distinguished community service award. He is a member of Sigma Xi, Upsilon Pi
Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer
Society, American Society for Engineering Education, Society of Women Engineers,
and International Game Developers Association.

" TABLE OF CONTENTS

Preface iv

CHAPTER 1 THE NATURE OF SOFTWARE 1

1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Software Application Domains &
113 legacy Software 7

JE2 The Changing Naiure of Sofiware 9
1.2.1 WebApps @
1.2.2 Mobile Applications @
2.3 Cloud Computing 10
1.2.4 Product line Software 11

1.8 Summary 11

PROBLEMS AND POINTS TO PONDER 12

FURTHER READINGS AND INFORMATION SOURCES 12

CHAPTER 2 SOFTWARE ENGINEERING 14

2.1 Defining the Discipline 15
2.2 The Software Process 16
2.2.1 The Process Framework 17

2272 Umbrella Activities 18
2.2.3 Process Adaptation 18

2.3 Software Engineering Practice 19
2.3.1 The Essence of Practice 19
2.3.2 General Principles 21

2.4 Software Development Myths 23

2.5 How It All Starts 26

2.6 Summary 27

PROBLEMS AND POINTS TO PONDER 27

FURTHER READINGS AND INFORMATION SOURCES 27

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 30

3.1 A Generic Process Model 31

3.2 Defining a Framework Activity 32

3.3 Identifying a Task Set 34

3.4 Process Patterns 35

3.5 Process Assessment and Improvement 37
3.6 Summary 38

PROBLEMS AND POINTS TO PONDER 38

FURTHER READINGS AND INFORMATION SOURCES 39

x TABLE OF CONTENTS

CHAPTER 4 PROCESS MODELS 40

4.1 Prescriptive Process Models 41
4.1.1 The Waterfall Model 41
412 Incremental Process Models 43
4.1.3 Evolutionary Process Models 45
4.1.4 Concurrent Models 49
4.1.5 A Final Word on Evolutionary Processes 51
4.2 Specialized Process Models 52
4.2.1 Component-Based Development 53
422 The Formal Methods Model 53
423 AspectOrienfed Software Development 54
4.3 The Unified Process 55
4.3.1 A Brief History 56
4.3.2 Phases of the Unified Process 56
4.4 Personal and Team Process Models 59
4.4 Personal Software Process 59
4.4.2 Team Software Process 60
4.5 Process Technology 61
4.6 Product and Process 62
4.7 Summary 64
PROBLEMS AND POINTS TO PONDER 64
FURTHER READINGS AND INFORMATION SOURCES OS5

CHAPTER 5 AGILE DEVELOPMENT 66

5.1 What Is Agility? 68
5.2 Agility and the Cost of Change 68
53 What Is an Agile Process? 69
5.3.1 Agility Principles 70
5.3.2 The Politics of Agile Development 71
5.4 Extreme Programming 72

5.4.1 The XP Process 72
54.2 Industrial XP 75

) Other Agile Process Models 77
5:5.1 Scrum 78

5.5.2 Dynamic Systems Development Method 79
35503 Agile Modeling 80
5.5.4 Agile Unified Process 82

56 ATool Set for the Agile Process 83

8.7 Summary 84

PROBLEMS AND POINTS TO PONDER 85

FURTHER READINGS AND INFORMATION SOURCES 85

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING

87

6.1 Characteristics of a Software Engineer 88
6.2 The Psychology of Software Engineering 89
6.3 The Software Team Q0
6.4 Team Structures 92
6.5 Agile Teams @3
6.5.1 The Generic Agile Team 93
6.5.2 The XP Team 94

PART TWO

6.6
6.7
6.8
6.9
6.10

TABLE OF CONTENTS

The Impact of Social Media 95

Software Engineering Using the Cloud 97
Collaboration Tools 98

Global Teams 99

Summary 100

PROBLEMS AND POINTS TO PONDER 101
FURTHER READINGS AND INFORMATION SOURCES 102

MODELING 103

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 104

xi

7.1
72

7.3

7.4
79

Software Engineering Knowledge 105

Core Principles 106

7.2.1 Principles That Guide Process 106
7,22 Principles That Guide Practice 107
Principles That Guide Each Framework Activity 109
7:3:1 Communication Principles 110
7.3.2 Planning Principles 112

7.3.3 Modeling Principles 114

7.34 Construction Principles 121

7.3.5 Deployment Principles 125

Work Practices 126

Summary 127

PROBLEMS AND POINTS TO PONDER 128
FURTHER READINGS AND INFORMATION SOURCES 129

CHAPTER 8 UNDERSTANDING REQUIREMENTS 131

8.1
8.2

8.3

8.4
8.5

8.6

Requirements Engineering 132

Establishing the Groundwork 138

8.2.1 Identifying Siakeholders 139

8.2.2 Recognizing Mulliple Viewpoinis 139
8.2.3 Working toward Collaboration 140
8.2.4 Asking the First Questions 140

8.2.5 Nonfunctional Requirements 141
8.2.6 Traceability 142

Eliciting Requirements 142

8.3.1 Collaborative Requirements Gathering 143
8:3.2 Quality Function Deployment 146
8.3.3 Usage Scenarios 146

8.3.4 Elicitation Work Products 147

8.3.5 Agile Requirements Elicitation 148
8.3.6 ServiceOriented Methods 148
Developing Use Cases 149

Building the Analysis Model 154

8.5.1 Elements of the Anclysis Model 154
8.5.2 Analysis Patterns 157

8.5.3 Agile Requirements Engineering 158
8.5.4 Requirements for SelFAdaptive Systems 158
Negotiating Requirements 159

xii TABLE OF CONTENTS

8.7 Requirements Monitoring 160

8.8 Validating Requirements 161

8.9 Avoiding Common Misiakes 162

8.10 Summary 162

PROBLEMS AND POINTS O PONDER 163

FURTHER READINGS AND OTHER INFORMATION SOURCES 164

CHAPTER @ REQUIREMENTS MODELING: SCENARIO-BASED
METHODS 166

Q.1 Requirements Analysis 167
Q.1.1 Overall Obijectives and Philosophy 168
1.2 Analysis Rules of Thumb 169
@.1.3 Domain Analysis 170
Q.14 Requirements Modeling Approaches 171

9.2 ScenarioBased Modeling 173
9.2.1 Creating a Preliminary Use Case 173
9.2.2 Refining a Preliminary Use Case 176
9.2.3 Wiriting a Formal Use Case 177

Q.3 UML Models That Supplement the Use Case 179
.31 Developing an Activity Diagram 180
9.3.2 Swimlane Diagrams 181

9.4 Summary 182

PROBLEMS AND POINTS TO PONDER 182

FURTHER READINGS AND INFORMATION SOURCES 183

CHAPTER 10 REQUIREMENTS MODELING: CLASS-BASED METHODS

184

10.1 Identifying Analysis Classes 185

10.2 Specifying Attributes 188

10.3 Defining Operations 189

10.4 ClassResponsibility-Collaborator Modeling 192
10.5 Associations and Dependencies 198

10.6 Analysis Packages 199

10.7 Summary 200

PROBLEMS AND POINTS TO PONDER 201

FURTHER READINGS AND INFORMATION SOURCES 201

CHAPTER 11 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS,
AND WEB/MOBILE APPS 202

Creating a Behavioral Model 203

Identifying Events with the Use Case 203

State Representations 204

Patterns for Requirements Modeling 207

11.4.1 Discovering Analysis Patterns 208

11.4.2 A Requirements Pattern Example: Actuator-Sensor 209
11.5 Requirements Modeling for Web and Mobile Apps 213
11.5.1 How Much Analysis Is Enough? 214
1152 Requirements Modeling Input 214

11.5.3 Requirements Modeling Output 215
11.5.4 Conient Model 216

NwN =

TABLE OF CONTENTS

11.5.5 Interaction Model for Web and Mobile Apps 217
11.5.6 Funcfional Model 218
11.5.7 Configuration Models for WebApps 219
11.5.8 Navigation Modeling 220
11.6 Summary 221
PROBLEMS AND POINTS TO PONDER 222
FURTHER READINGS AND INFORMATION SOURCES 222

CHAPTER 12 DESIGN CONCEPTS 224

Xiii

12.1 Design within the Context of Software Engineering 225
12.2 The Design Process 228
12.2.1 Software Quality Guidelines and Attributes 228
12.2.2 The Evolution of Software Design 230
12.3 Design Concepts 231
12.3.1 Abstraction 232
12.3.2 Architecture 232
12.3.3 Patterns 233
12.3.4 Separation of Concerns 234
12.3.5 Modularity 234
12.3.6 Information Hiding 235
12.3.7 Functional Independence 236
12.3.8 Refinement 237
12.3.9 Aspects 237
12.3.10 Refactoring 238
12.3.11 ObjectOriented Design Concepts 238
12.3.12 Design Closses 239
12.3.13 Dependency Inversion 241
12.3.14 Design for Test 242
12.4 The Design Model 243
12.4.1 Data Design Elements 244
12.4.2 Architectural Design Elements 244
12.4.3 Interface Design Elements 245
12.4.4 Component-level Design Elements 247
12.4.5 Deployment-level Design Elements 248
12.5 Summary 249
PROBIEMS AND POINTS TO PONDER 250
FURTHER READINGS AND INFORMATION SOURCES 251

CHAPTER 13 ARCHITECTURAL DESIGN 252

13.1 Software Architeciure 253
13.1.1 What Is Architecture? 253
13.1.2 Why Is Architecture Importont2 254
13:1.3 Architectural Descriptions 255
13.1.4 Architectural Decisions 256
13.2 Architectural Genres 257
13.3 Architectural Styles 258
1:3.3.1 A Brief Taxonomy of Architectural Styles 258
13.3.2 Architectural Patterns 263
13.3.3 Organization and Refinement 263
13.4 Architectural Considerations 264

xiv. TABLE OF CONTENTS

13.5 Architectural Decisions 266

13.6 Architectural Design 267
13.6.1 Representing the System in Context 267
13.6.2 Defining Archetypes 269
13.6.3 Refining the Architecture into Components 270
13.6.4 Describing Instantiations of the System 272
13.6.5 Architectural Design for Web Apps 273
13.6.6 Architectural Design for Mobile Apps 274

13.7 Assessing Alternative Architectural Designs 274
18.7.1 Architectural Description languages 276
13.7.2 Architectural Reviews 277

13.8 lessons learned 278

13.9 Pattern-based Architecture Review 278

13.10 Architecture Conformance Checking 279

13.11 Agility and Architecture 280

13.12 Summary 282

PROBLEMS AND POINTS TO PONDER 282

FURTHER READINGS AND INFORMATION SOURCES 283

CHAPTER 14 COMPONENT-LEVEL DESIGN 285

14.1 What Is a Componente 286
14.1.1 An ObjectOriented View 286
14.1.2 The Tradifional View 288
14.1.3 A ProcessRelated View 291
14.2 Designing Class-Based Components 291
14.2.1 Basic Design Principles 292
14.2.2 Componentlevel Design Guidelines 295
14.2.3 Cohesion 296
14.2.4 Coupling 298
14.3 Conducting Componentlevel Design 299
14.4 Componentlevel Design for WebApps 305
14.4.1 Confent Design at the Component level 306
14.4.2 Functional Design at the Component level 306
14.5 Componentlevel Design for Mobile Apps 306
14.6 Designing Traditional Components 307
14.7 ComponentBased Development 308
14.7.1 Domain Engineering 308
14.7.2 Component Qualification, Adaptation, and Composition 309
14.7.3 Architectural Mismaich 311
14.7.4 Analysis and Design for Reuse 312
14.7.5 Classifying and Refrieving Components 312
14.8 Summary 313
PROBLEMS AND POINTS TO PONDER 315
FURTHER READINGS AND INFORMATION SOURCES 315

CHAPTER 15 USER INTERFACE DESIGN 317

15.1 The Golden Rules 318
15503 Place the User in Control 318
15.1.2 Reduce the User's Memory load 319
1.5.1:3 Make the Interface Consistent 321

15.2

15.3

15.4

Sk

15.6
137

TABLE OF CONTENTS

User Interface Analysis and Design 322

15.2.1 Inferface Analysis and Design Models 322
15.2.2 The Process 323

Interface Analysis 325

15.3.1 User Analysis 325

15.3.2 Task Analysis and Modeling 326

15.3.3 Analysis of Display Content 331

15:3.4 Analysis of the Work Environment 331

Interface Design Steps 332

15.4.1 Applying Interface Design Steps 332

15.4.2 User Interface Design Patterns 334

15.4.3 Design Issues 335

WebApp and Mobile Inferface Design 337

15.5.1 Interface Design Principles and Guidelines 337
15.5.2 Inferface Design Workflow for Web and Mobile Apps 341
Design Evaluation 342

Summary 344

PROBLEMS AND POINTS TO PONDER 345
FURTHER READINGS AND INFORMATION SOURCES 346

CHAPTER 16 PATTERN-BASED DESIGN 347

XV

16.1

16.2

16.3
16.4
16.5
16.6

16.7
16.8

Design Patterns 348

16.1.1 Kinds of Patterns 349

16.1.2 Frameworks 351

16.1.3 Describing a Pattern 352

16.1.4 Patiern Languages and Repositories 353
Pattern-Based Software Design 354

16.2.1 Pattern-Based Design in Context 354
16.2.2 Thinking in Patterns 354

16.2.3 Design Tasks 356

16.2.4 Building o Pattern-Organizing Table 358
16.2.5 Common Design Mistakes 359
Architeciural Patterns 359

Componentlevel Design Patterns 360

User Interface Design Patterns 362

WebApp Design Patterns 364

16.6.1 Design Focus 365

16.6.2 Design Granularity 365

Patterns for Mobile Apps 366

Summary 367

FROBIEMS AND POINTS TO PONDER 368
FURTHER READINGS AND INFORMATION SOURCES 369

CHAPTER 17 WEBAPP DESIGN 371

171
17.2
17.3
17.4

WebApp Design Quality 372
Design Goals 374

A Design Pyramid for WebApps 375
WebApp Interface Design 376

xvi TABLE OF CONTENTS

17.5 Aesthetic Design 377
17.5.1 Layout Issues 378
17.5.2 Graphic Design Issues 378
17.6 Conlent Design 379
17.6.1 Content Objects 379
17.6.2 Content Design Issues 380
17.7 Architeciure Design 381
17.7:1 Content Architecture 381
17.7.2 WebApp Architecture 384
17.8 Navigation Design 385
17.8.1 Navigation Semantics 385
17.8.2 Navigation Syntax 387
17.9 Componentlevel Design 387
17.10 Summary 388
PROBLEMS AND POINTS TO PONDER 389
FURTHER READINGS AND INFORMATION SOURCES 389

CHAPTER 18 MOBILEAPP DESIGN 391

18.1 The Challenges 392
18.1.1 Development Considerations 392
18.1.2 Technical Considerations 393
18.2 Developing MobileApps 395
18.2.1 MobileApp Quality 397
18.2.2 User Interface Design 398
18.2.3 Context-Aware Apps 399
18.2.4 lessons learmed 400
18.3 MobileApp Design—Best Practices 401
18.4 Mobility Environments 403
18.5 The Cloud 405
18.6 The Applicability of Conventional Software Engineering 407
18.7 Summary 408
PROBLEMS AND POINTS TO PONDER 409
FURTHER READINIGS AND INFORMATION SOURCES 409

PART THREE QUALITY MANAGEMENT 411

CHAPTER 19 QUALITY CONCEPTS 412

19.1 Whatls Quality2 413
19.2 Software Quality 414
19.2.1 Garvin's Quality Dimensions 415
19.2.2 McCall's Quolity Factors 416
19.2.3 1ISO 9126 Quality Factors 418
19.2.4 Targeted Quality Factors 418
19.2.5 The Transition to @ Quantitative View 420
19.3 The Software Quality Dilemma 420
19.3.1 “Good Enough” Software 421
19.3.2 The Cost of Quality 422
19.3.3 Risks 424
19.3.4 Negligence and Liability 425

