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GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS
AND IMAGE ANALYSIS

This book provides an introduction to the use of geometric partial differential
equations in image processing and computer vision. This research area brings
a number of new concepts into the field, providing a very fundamental and
formal approach to image processing. State-of-the-art practical results in a large
number of real problems are achieved with the techniques described in this
book. Applications covered include image segmentation, shape analysis, image
enhancement, and tracking.

This book will be a useful resource for researchers and practitioners. It is
intended to provide information for people investigating new solutions to image
processing problems as well as for people searching for existing advanced
solutions.

Guillermo Sapiro is a Professor of Electrical and Computer Engineering at the
University of Minnesota, where he works on differential geometry and geomet-
ric partial differential equations, both in theory and applications in computer
vision, image analysis, and computer graphics.
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Preface

This book is an introduction to the use of geometric partial differential
equations (PDEs) in image processing and computer vision. This relatively
new research area brings a number of new concepts into the field, provid-
ing, among other things, a very fundamental and formal approach to image
processing. State-of-the-art practical results in problems such as image seg-
mentation, stereo, image enhancement, distance computations, and object
tracking have been obtained with algorithms based on PDE’s formulations.

This book begins with an introduction to classical mathematical concepts
needed for understanding both the subsequent chapters and the current pub-
lished literature in the area. This introduction includes basic differential
geometry, PDE theory, calculus of variations, and numerical analysis. Next
we develop the PDE approach, starting with curves and surfaces deforming
with intrinsic velocities, passing through surfaces moving with image-based
velocities, and escalating all the way to the use of PDEs for families of
images. A large number of applications are presented, including image seg-
mentation, shape analysis, image enhancement, stereo, and tracking. The
book also includes some basic connections among PDEs themselves as well
as connections to other more classical approaches to image processing.

This book will be a useful resource for researchers and practitioners. It
is intended to provide information for people investigating new solutions
to image processing problems as well as for people searching for existent
advanced solutions. One of the main goals of this book is to provide a
resource for a graduate course in the topic of PDEs in image processing.
Exercises are provided in each chapter to help with this.
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Introduction

The use of partial differential equations (PDEs) and curvature-driven flows
in image analysis has become an interest-raising research topic in the past
few years. The basic idea is to deform a given curve, surface, or image with
a PDE, and obtain the desired result as the solution of this PDE. Sometimes,
as in the case of color images, a system of coupled PDEs is used. The art
behind this technique is in the design and analysis of these PDEs.

Partial differential equations can be obtained from variational problems.

Assume a variational approach to an image processing problem formulated
as

arg{Min; U )},

where U is a given energy computed over the image (or surface) /. Let F(®)
denote the Euler derivative (first variation) of {{. Because under general
assumptions a necessary condition for / to be a minimizer of I/ is that
F(I) =0, the (local) minima may be computed by means of the steady-
state solution of the equation

al
m = F(I),

where ¢ is an artificial time-marching parameter. PDEs obtained in this way
have already been used for quite some time in computer vision and image
processing, and the literature is large. The most classical example is the
Dirichlet integral,

U = f |V1[*(x)dx,
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Xxii Introduction
which is associated with the linear heat equation
al
—(t,x) = Al(x).
ot (t,x) (

More recently, extensive research is being done on the direct derivation
of evolution equations that are not necessarily obtained from the energy
approaches. Both types of PDEs are studied in this book.

Clearly, when introducing a new approach to a given research area, one
must justify its possible advantages. Using partial differential equations
and curve/surface flows in image analysis leads to modeling images in a
continuous domain. This simplifies the formalism, which becomes grid-
independent and isotropic. The understanding of discrete local nonlinear
filters is facilitated when one lets the grid mesh tend to zero and, thanks to an
asymptotic expansion, one rewrites the discrete filter as a partial differential
operator.

Conversely, when the image is represented as a continuous signal, PDEs
can be seen as the iteration of local filters with an infinitesimal neighborhood.
This interpretation of PDEs allows one to unify and classify a number of
the known iterated filters as well as to derive new ones. Actually, we can
classify all the PDEs that satisfy several stability requirements for image
processing such as locality and causality [5].

Another important advantage of the PDE approach is the possibility of
achieving high speed, accuracy, and stability with the help of the extensive
available research on numerical analysis. Of course, when considering PDEs
for image processing and numerical implementations, we are dealing with
derivatives of nonsmooth signals, and the right framework must be defined.
The theory of viscosity solutions provides a framework for rigorously using
a partial differential formalism, in spite of the fact that the image may be not
smooth enough to give a classical sense to derivatives involved in the PDE.
Last, but not least, this area has a unique level of formal analysis, giving
the possibility of providing not only successful algorithms but also useful
theoretical results such as existence and uniqueness of solutions.

Ideas on the use of PDEs in image processing go back at least to
Gabor [146] and, -a bit more recently, to Jain [196]. However, the field
really took off thanks to the independent works of Koenderink [218] and
Witkin [413]. These researchers rigorously introduced the notion of scale
space, that is, the representation of images simultaneously at multiple scales.
Their seminal contribution is, to a large extent, the basis of most of the
research in PDEs for image processing. In their work, the multiscale im-
age representation is obtained by Gaussian filtering. This is equivalent to
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deforming the original image by means of the classical heat equation, obtain-
ing in this way an isotropic diffusion flow. In the late 1980s, Hummel [191]
noted that the heat flow is not the only parabolic PDE that can be used to
create a scale space, and indeed he argued that an evolution equation that
satisfies the maximum principle will define a scale space as well (all these
concepts will be described in this book). Maximum principle appears to be a
natural mathematical translation of causality. Koenderink once again made
a major contribution into the PDE arena (this time probably involuntarily,
as the consequences were not clear at all in his original formulation), when
he suggested adding a thresholding operation to the process of Gaussian
filtering. As later suggested by Osher and his colleagues and as proved by a
number of groups, this leads to a geometric PDE, actually, one of the most
famous ones: curvature motion.

The work of Perona and Malik [310] on anisotropic diffusion has been
one of the most influential papers in the area. They proposed replacing Gaus-
sian smoothing, equivalent to isotropic diffusion by means of the heat flow,
with a selective diffusion that preserves edges. Their work opened a num-
ber of theoretical and practical questions that continue to occupy the PDE
image processing community, e.g., Refs. [6 and 324]. In the same frame-
work, the seminal works of Osher and Rudin on shock filters [293] and
Rudin et al. [331] on total variation decreasing methods explicitly stated
the importance and the need for understanding PDEs for image process-
ing applications. At approximately the same time, Price et al. published a
very interesting paper on the use of Turing’s reaction-diffusion theory for a
number of image processing problems [319]. Reaction-diffusion equations
were also suggested to create artificial textures (394, 414]. In Ref. [5] the
authors showed that a number of basic axioms lead to basic and fundamental
PDEs.

Many of the PDEs used in image processing and computer vision are
based on moving curves and surfaces with curvature-based velocities. In this
area, the level-set numerical method developed by Osher and Sethian [294]
was very influential and crucial. Early developments on this idea were pro-
vided by Ohta et al. [274], and their equations were first suggested for shape
analysis in computer vision in Ref. [204]. The basic idea is to represent the
deforming curve, surface, or image as the level set of a higher dimensional
hypersurface. This technique not only provides more accurate numerical im-
plementations but also solves topological issues that were previously very
difficult to treat. The representation of objects as level sets (zero sets) is of
course not completely new to the computer vision and image processing
communities, as it is one of the fundamental techniques in mathematical
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morphology [356]. Considering the image itself as a collection of its level
sets and not just as the level set of a higher dimensional function is a key
concept in the PDE community [5].

Other works, such as the segmentation approach of Mumford and Shah
[265] and the snakes of Kass et al. [198] have been very influential in the
PDE community as well.

It should be noted that a number of the above approaches rely quite
heavily on a large number of mathematical advances in differential geometry
for curve evolution [162] and in viscosity solution theory for curvature
motion (see, e.g., Evans and Spruck [126].)

Of course, the frameworks of PDEs and geometry-driven diffusion have
been applied to many problems in image processing and computer vision
since the seminal works mentioned above. Examples include continuous
mathematical morphology, invariant shape analysis, shape from shading,
segmentation, tracking, object detection, optical flow, stereo, image de-
noising, image sharpening, contrast enhancement, and image quantization.
Many of these contributions are discussed in this book.

This book provides the basic mathematical background necessary for
understanding the literature in PDEs applied to image analysis. Fundamen-
tal topics such as differential geometry, PDEs, calculus of variations, and
numerical analysis are covered. Then the basic concepts and applications
of surface evolution theory and PDEs are presented.

Itis technically impossible to cover in a single book all the great literature
in the area, especially when the area is still very active. This book is based
on the author’s own experience and view of the field. I apologize in advance
to those researchers whose outstanding contributions are not covered in this
book (maybe there is a reason for a sequel!). I expect that the reader of this
book will be prepared to continue reading the abundant literature related to
PDEs. Important sources of literature are the excellent collection of papers
in the book edited by Romeny [324], the book by Guichard and Morel [168],
which contains an outstanding description of the topic from the point of view
of iterated infinitesimal filters, Sethian’s book on level sets [361], which are
covered in a very readable and comprehensive form, Osher’s long-expected
book (hopefully ready soon; until then see the review paper in Ref. [290]),
Lindeberg’s book, a classic in scale-space theory [242], Weickert’s book
on anisotropic diffusion in image processing [404], Kimmel’s lecture notes
[207], Toga’s book on brain warping [389], which includes a number of
PDE-based algorithms for this, the special issue (March 1998) of the IEEE
Transactions on Image Processing (March 1998), the special issues of the
Journal of Visual Communication and Image Representation (April 2000
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and 2001, to appear), a series of Special Sessions at a number of
IEEE International Conferences on Image Processing (ICIP 95, 96, 97),
and the Proceedings of the Scale Space Workshop (June 1997 and
September 1999). Finally, additional information for this book can be
found in my home page (including the pages with color figures) at
http://www.ece.umn.edu/users/guille/book.html.

Enjoy!
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