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students in computer science, computer engineering, and electri-

cal engineering. It has no prerequisites, although the maturity
attained through an introduction to engineering course or a first pro-
gramming course would be helpful.

The book stresses fundamentals. It teaches through a large number
of examples. The philosophy of the author is that the only way to learn
logic design is to do a large number of design problems. Thus, in addi-
tion to the numerous examples in the body of the text, each chapter has a
set of Solved Problems, that is, problems and their solutions, a large set
of Exercises (with answers to selected exercises in Appendix B), and a
Chapter Test (with answers in Appendix C). In addition, there are a set of
laboratory experiments that tie the theory to the real world. Appendix A
provides the background to do these experiments with a standard hard-
ware laboratory (chips, switches, lights, and wires), a breadboard simu-
lator (for the PC or Macintosh), and two schematic capture tools. The
course can be taught without the laboratory, but the student will benefit
significantly from the addition of 8 to 10 selected experiments.

Although computer-aided tools are widely used for the design of
large systems, the student must first understand the basics. The basics
provide more than enough material for a first course, The schematic cap-
ture laboratory exercises and a section on Hardware Design Languages
in Chapter 8 provide some material for a transition to a second course
based on one of the computer-aided tool sets.

Chapter 1 gives a brief overview of number systems as it applies to
the material of this book. (Those students who have studied this in an
earlier course can skip to Section 1.2.) It then discusses the steps in the
design process for combinational systems and the development of truth
tables.

Chapter 2 introduces switching algebra and the implementation of
switching functions using common gates—AND, OR, NOT, NAND,
NOR, Exclusive-OR, and Exclusive-NOR. We are only concerned with
the logic behavior of the gates, not the electronic implementation.

Chapter 3 deals with simplification using the Karnaugh map. It pro-
vides methods for solving problems (up to six variables) with both single
and multiple outputs.

Chapter 4 introduces two algorithmic methods for solving combi-
national problems—the Quine-McCluskey method and Iterated Con-
sensus. Both provide all of the prime implicants of a function or set of

This book is intended as an introductory logic design book for
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functions, and then use the same tabular method to find minimum sum of
products solutions.

Chapter 5 is concerned with the design of larger combinational
systems. It introduces a number of commercially available larger de-
vices, including adders, comparators, decoders, encoders and priority
encoders, and multiplexers. That is followed by a discussion of the use
of logic arrays—ROMs, PLAs, and PALs for the implementation of
medium scale combinational systems. Finally, two larger systems are
designed.

Chapter 6 introduces sequential systems. It starts by examining the
behavior of latches and flip flops. It then discusses techniques to analyze
the behavior of sequential systems.

Chapter 7 introduces the design process for sequential systems. The
special case of counters is studied next. Finally, the solution of word
problems, developing the state table or state diagram from a verbal
description of the problem is presented in detail.

Chapter 8 looks at larger sequential systems. It starts by examining
the design of shift registers and counters. Then, PLDs are presented.
Three techniques that are useful in the design of more complex
systems—ASM diagrams, one-shot encoding, and HDLs—are discussed
next. Finally, two examples of larger systems are presented.

Chapter 9 deals with state reduction and state assignment issues.
First, a tabular approach for state reduction is presented. Then partitions
are utilized both for state reduction and for achieving a state assignment
that will utilize less combinational logic.

A feature of this text is the Solved Problems. Each chapter has a
large number of problems, illustrating the techniques developed in the
body of the text, followed by a detailed solution of each problem. Stu-
dents are urged to solve each problem (without looking at the solution)
and then compare their solution with the one shown.

Each chapter contains a large set of exercises. Answers to a selection
of these are contained in Appendix B. Solutions will be made available
to instructors through the Web. In addition, each chapter concludes with
a Chapter Test; answers are given in Appendix C.

Another unique feature of the book is the laboratory exercises, in-
cluded in Appendix A. Four platforms are presented—a hardware based
Logic Lab (using chips, wires, etc.); a hardware lab simulator that allows
the student to “connect” wires on the computer screen; and two circuit
capture programs, LogicWorks 4 and Altera Max+plus II. Enough
information is provided about each to allow the student to perform a
variety of experiments. A set of 26 laboratory exercises are presented.
Several of these have options, to allow the instructor to change the
details from one term to the next.

We teach this material as a four-credit course that includes an
average of 3 1/2 hours per week of lecture, plus, typically, eight labo-
ratory exercises. (The lab is unscheduled; it is manned by Graduate
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Assistants 40 hours per week; they grade the labs.) In that course we
cover

Chapter 1: all of it

Chapter 2: all but 2.11

Chapter 3: all of it

Chapter 4: if time permits at the end of the semester

Chapter 5: all but 5.8. However, there is a graded design problem

based on that material (10 percent of the grade; students usually
.working in groups of 2 or 3).

Chapter 6: all of it

Chapter 7: all of it

Chapter 8: 8.1, 8.2, 8.3. We sometimes have a second project based

on 8.7.

Chapter 9 and Chapter 4: We often have some time to look at one

of these. We have never been able to cover both.

With less time, the coverage of Section 2.10 could be minimized.
Section 3.5 is not needed for continuity; Section 3.6 is used somewhat in
the discussion of PLAs in Section 5.7.2. Chapter 5 is not needed for any-
thing else in the text, although many of the topics are useful to students
elsewhere. The instructor can pick and choose among the topics. The SR
and T flip flops could be omitted in Chapters 6 and 7. Sections 7.2 and 7.3
could be omitted without loss of continuity. As is the case for Chapter 5,
the instructor can pick and choose among the topics of Chapter 8. With a
limited amount of time, Section 9.1 could be covered. With more time, it
could be skipped and state reduction taught using partitions (9.2 and 9.3).
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introduction

referred to as logic design. A digital system is one in which all of

the signals are represented by discrete values. Computers and
calculators are obvious examples, but most electronic systems contain a
large amount of digital logic. Internally, digital systems usually operate
with two-valued signals, which we will label 0 and 1. Although multi-
valued systems have been built, two-valued systems are more reliable,
and thus almost all digital systems use two-valued signals. Such a sys-
tem, as shown in Figure 1.1, may have an arbitrary number of inputs
(A, B, . ..) and an arbitrary number of outputs (W, X, . . .).

In addition to the data inputs shown, some circuits require a timing
signal, called a clock (which is just another input signal that alternates
between 0 and 1 at a regular rate). We will discuss the details of clock
signals in Chapter 6.

A simple example of digital systems is shown in Example 1.1.

This book concerns the design of digital systems, a process often

Figure 1.1 A digital system.

A ——
Bim——

—_—

Digital
System

Sl 14
—— X

—_—

ninputs

A system with three inputs, A, B, and C, and one output, Z, such that Z = 1
if and only if' two of the inputs are 1.

m outputs

m

The inputs and outputs of a digital system represent real quantities.
Sometimes, as in Example 1.1, these are naturally binary, that is, they
take on one of two values. Other times, they may be multivalued. For
example, an input may be a decimal digit or the output might be the letter
grade for this course. Each must be represented by a set of binary digits
(often called bits). This process is referred to as coding the inputs and
outputs into binary. (We will discuss the details of this later.)

"The term if and only if is often abbreviated iff. It means that the output is | if the
condition is met and is not | (which means it must be 0) if the condition is not met.



Tabie 1.1 A truth table for

Example 1.1,

A B 4

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
| 0 |

1 1 0

| 1

EXAMPLE 1.2

EXAMPLE 1.3

EXAMPLE 1.4

Chapter 1 Introduction

The physical manifestation of these binary quantities may be one of
two voltages, for example, 0 volts or ground for logic 0 and 5 volts for
logic 1, as in the laboratory implementations we will be discussing in
Appendix A.1. It may also be a magnetic field in one direction or another
(as on diskettes), a switch in the up or down position (for an input), or a
light on or off (as an output). Except in the discussion of specific labora-
tory experiments and in the translation of verbal descriptions into more
formal ones, the physical representation will be irrelevant in this text; we
will be concerned with 0’s and 1's.

We can describe the behavior of a digital system, such as that of
Example 1.1, in tabular form. Since there are only eight possible input
combinations, we can list all of them and what the output is for each.
Such a table (referred to as a truth table) is shown in Table 1.1. We will
leave the development of truth tables (including one similar to this) to
later in the chapter.

Three other examples are given in Examples 1.2, 1.3, and 1.4.

A system with eight inputs, representmg two 4-bit binary numbers, and one

5-bit output, representing the sum. (Each input number can range from O to
15; the output can range from 0 to 30.)

A system with one input, A, plus a clock, and one output, Z, which is 1 |ff
the |nput was one at the last three consecutlve ctook times.

A more complex exampte is a traffic controller In the simplest case, there
are just two streets, and the light is green on each street for a fixed period
of time. It then goes to yellow for another fixed period and finally to red.
There are no inputs to this system other than the clock. There are six out-
puts, one for each color in each direction. (Each output may control multi-
ple bulbs.) Traffic controllers may have many more outputs, if, for example,
there are left-turn signals. Also, there may be several inputs to indicate
when there are vehicles waiting at a red signal or passing a green one.

The first two examples are combinational, that is, the output depends
only on the present value of the input. In Example 1.1, if we know the
value of A, B, and C right now, we can determine what Z is now.>
Examples 1.3 and 1.4 are sequential, that is, they require memory, since
we need to know something about inputs at an earlier time (previous
clock times).

We will concentrate on combinational systems in the first half of the
book and leave the discussion about sequential systems until later. As we

*In a real system, there is a small amount of delay between the input and output, that is, if
the input changes at some point in time, the output changes a little after that. The time
frame is typically in the nanosecond (10" sec) range. We will ignore those delays almost
all of the time, but we will return to that issue in Chapter 5.
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will see, sequential systems are composed of two parts, memory and
combinational logic. Thus, we need to be able to design combinational
systems before we can begin designing sequential ones.

A word of caution about natural language in general, and English in
particular, is in order. English is not a very precise language. The exam-
ples given above leave some room for interpretation. In Example 1.1, is
the output to be 1 if all three of the inputs are 1, or only if exactly two
inputs are 1? One could interpret the statement either way. When we
wrote the truth table, we had to decide; we interpreted “two™ as “two or
more’ and thus made the output 1 when all three inputs were 1. (In prob-
lems in this text, we will try to be as precise as possible, but even then,
different people may read the problem statement in different ways.)

The bottom line is that we need a more precise description of logic
systems. We will develop that for combinational systems in the ﬁrst two
chapters and for sequential systems in Chapter 6.

1.1 A BRIEF REVIEW OF NUMBER
SYSTEMS

This section gives an introduction to some topics in number systems, pri-
marily those needed to understand the material in the remainder of the
book. We will only deal with integers. If this is familiar material from
another course, skip to Section 1.2 (page 19).

Integers are normally written using a positional number system,
where each digit represents the coefficient in a power series

N=a,_r "' +a, "+ - +a,r*+ar+a

n—

where n is the number of digits, r is the radix or base, and the a; are the
coefficients, where each is an integer in the range

D=a<r

For decimal, r = 10, and the @’s are in the range O to 9. For binary, r = 2,
and the a’s are all either 0 or 1. Other commonly used notations in
computer documentation are octal, » = 8, and hexadecimal, r = 16. In
binary, the digits are usually referred to as bits, a contraction for hinary
digirs.

The decimal number 7642 (sometimes written 7642, to emphasize
that it is radix 10, that is, decimal) thus stands for

7642, =7 X 10° + 6 X 10> + 4 X 10 + 2
and the binary number

017111, = 1 X2 +0 X2 +1 X2+ I X222+ 1X2+1
=R2+8+4+2+1=47,
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From this last example,’ it is clear how to convert from binary to deci-
mal; just evaluate the power series. To do that easily, it is useful to know
the powers of 2, rather than compute them each time they are needed.
(It would save a great deal of time and effort if at least the first ten pow-
ers of 2 were memorized; the first 20 are shown in the Table 1.2.)

Table 1.2 Powers of 2,

n 2% n 2"
| i 11 2,048
2 4 12 4,096
3 8 13 8,192
4 16 14 16,384
5 32 15 32,768
6 64 16 65,536
¥ 128 17 131,072
8 256 18 262,144
9 512 19 524,288

10 1,024 20

We will often be using the first 16 positive binary integers, and
sometimes the first 32, as shown in the Table 1.3. (As in decimal, leading
0’s are often left out, but we have shown the 4-bit number including lead-
ing 0’s for the first 16.) When the size of the storage place for a positive
binary number is specified, then leading 0's are added so as to obtain the

correct number of bits.

Table 1.3 First 32 binary integers.

I

(n“ i “”’i’ 1 I m. i m D i ) \l Bi ‘ 0
0 0000 16 10000
1 I 0001 17 10001
2 10 0010 18 10010
3 11 0011 19 10011
4 100 0100 20 10100
5 101 0101 21 10101
6 110 0110 22 10110
7 111 0111 23 10111
8 1000 1000 24 11000
9 1001 1001 25 11001
10 1010 1010 26 11010
11 1011 1011 27 11011
12 1100 1100 28 11100
13 1101 1101 29 11101
14 1110 1110 30 L1110
15 111 1111 31 11111

Note that the number one less than 2" consists of n 1's (for example,
o —10= 1111 = 15 and 23 = 1= 11111= 31):

*Section 1.6, Solved Problems, contains additional examples of each of the types of
problems discussed in this chapter. There is a'section of Solved Problems in each of the

chapters.
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An n-bit number can represent the positive integers from 0 to
2" — 1. Thus, for example, 4-bit numbers have the range of 0 to 15, 8-bit
numbers 0 to 255 and 16-bit numbers 0 to 65,535.

To convert from decimal to binary, we could evaluate the power
series of the decimal number, by converting each digit to binary, that is

746 = 111 X (1010)'"° + 0100 X 1010 + 0110

but that requires binary multiplication, which is rather time-consuming.
There are two straightforward algorithms using decimal arithmetic.
First, we can subtract from the number the largest power of 2 less/than
that number and put a | in the corresponding position of the binary
equivalent. We then repeat that with the remainder. A 0 is put in the
position for those powers of 2 that are larger than the remainder.

For 746, 2" = 512 is the largest power of 2 less than or equal to 746, and
thus there is a 1 in the 27 (512) position. We then compute 746 — 512 =
234, The next smaller power of 2 is 2% = 256, but that is larger than 234
and thus, there is a 0 in the 2° position. Next, we compute 234 — 122 =
1086, putting a | = 2 position. (Now, the binary number begins 101.)
Continuing, we subtract 64 from 106, resulting in 42 and a 1 in the 2°
position (and now the number begins with 1011). Since 42 is larger than
32, we have a 1 in the 2° position, and compute 42 — 32 = 10. Since
2 = 186 is greater than 10, there is a 0 in the 2° position. At this point, we
can continue subtracting (8 next) or recognize that the binary equivalent of
the remainder, 10, is 1010, giving

746, =1X 29+ 0 X 2P +1 2" +1 X 28+ 1% 2°40x2¢
+1X2B2+0X2+1X24+0
= 1011101010,

The other approach is to divide the decimal number by 2 repeatedly.
The remainder each time gives a digit of the binary answer, starting at the
least significant bit (a,). The remainder is then discarded and the process
is repeated.

Converting 746 from decimal to binary, we compute

746/2 = 373 with a remainder of 0 0

186 with a remainder of 1 10

: 13 with a rarmaind O 10
93/2 = 46 with a remainder of 1 1010
46/2 = 23 with a remainder of O 01010
23/2 = 11 with a remainder of 1 101010
2 = 5 with a remainder of 1 1101010
5/2 = 2 with a remainder of 1 11101010
2/2 = 1 with a remainder of 0 011101010

with a remmainder of 1 1011101010




