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This part concentrates on the following themes: analog signal
processing, circuit analysis, signals and systems, and operational
amplifiers. This part describes how electrical signals represent information

and circuit interconnection laws.
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@ Chapter Analog Signal Processing

This chapter introduces the fundamental circuit elements, equivalent circuits and circuit interconnection laws.
It is important to understand how physical elements operate in the real-world and how a circuit connects generic

elements to transform the input signal into output signal.

Text A Circuit Elements

and Interconnection Laws

g1 .1 Generic Circuit Elements

Knowing that information can be represented by signals, what we need to understand is how signals

are physically realized. Over the years, electric signals have been found to be the easiest to use. Voltages
and currents comprise the electric instantiations of signals. Thus, we need to delve into the world of
electricity and electromagnetism. The systems used to manipulate electric signals directly are called circuits,
and they refine the information representation or extract information from the voltage or current. In many
cases, they make nice examples of linear systems.

A generic circuit element places a constraint between the classic variables of a circuit: voltage and
current. Voltage is electric potential and represents the “push” that drives electric charge from one place to
another. What causes charge to move is a physical separation between the positive and negative charge. A
battery generates, through electrochemical means, excess positive charge at one terminal and negative
charge at the other, creating an electric field. Voltage is defined across a circuit element, with the positive
sign denoting a positive voltage drop across the element. When a conductor connects the positive and
negative potentials, current flows, with positive current indicating that positive charge flows from the

e . . @ . :
positive terminal to the negative. " Electrons comprise current flow in many cases. Because electrons have

(1) When a conductor connects the positive and negative potentials, current flows, with positive current indicating that positive charge
flows from the positive terminal to the negative.
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a negative charge, they move in the opposite direction of positive current flow: Negative charge flowing to
the right is equivalent to positive charge moving to the left.

It is important to understand the physics of current flow in conductors to appreciate the innovation of
new electronic devices. Electric charge can arise from many sources, the simplest being the electron. When
we say that “electrons flow through a conductor,” what we mean is that the conductor’s constituent atoms
freely give up electrons from their outer shells. “Flow” thus means that electrons hop from atom to atom
driven along by the applied electric potential. A missing electron, however, is a virtual positive charge.
Electrical engineers call these holes, and in some materials, particularly certain semiconductors, current
flow is actually caused by them. Current flow also occurs in nerve cells found in our brain. Here, neurons
"communicate" using propagating voltage pulses that rely on the flow of positive ions (potassium and
sodium primarily, and to some degree calcium) across the neuron’s outer wall. Thus, current can come from
many sources, and circuit theory can be used to understand how current flows in reaction to electric fields.

Current flows through circuit elements, as depicted in Figure 1.1, and through
conductors, which we indicate by lines in circuit diagrams. For every circuit element /
we define a voltage and a current. The element has a v-i relation defined by the
element’s physical properties. In defining the v-i relation, we have the convention
that positive current flows from positive to negative voltage drop. Voltage has units i 1.0 The goesic
of volts, and both the unit and the quantity are named after Volta. Current has units circuit element.
of amperes, and is named after the French physicist Ampeére.

Voltages and currents also carry power. Again using the convention shown in Figure 1.1 for circuit
elements, the instantaneous power at each moment of time consumed by the element is given by the product
of the voltage and current.

p)=v(2)i(t) (1.1)

A positive value for power indicates that at times the circuit element is consuming power; a negative
value means it is producing power.(D With voltage expressed in volts and current in amperes, power defined
this way has units of watts. Just as in all areas of physics and chemistry, power is the rate at which energy is
consumed or produced. Consequently, energy is the integral of power.

E(t)= I; pla)da (1.2)

Again, positive energy corresponds to consumed energy and negative energy corresponds to energy
production. Note that a circuit element having a power profile that is both positive and negative over some
intervals could consume or produce energy according to the sign of the integral of power. The units of

energy are joules since a watt equals joules/second.

1.2 Ideal Circuit Elements

The elementary circuit elements——the resistor, capacitor, and inductor——impose linear relationship

(1) A positive value for power indicates that at times the circuit element is consuming power; a negative value means it is producing power.
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between voltage and current.
The resistor is far and away the simplest circuit element. In a resistor, the voltage is proportional to the
current, with the constant proportionality R, known as the resistance.
w(t) = Ri(t) (1.3)
Resistance has units of ohms, denoted by €, named after the German electrical scientist Georg Ohm.

Sometimes, the v-i relation for the resistor is written as i = Gv, with G, the conductance, equal to 1/R. Conductance

has units of Siemens (S), and is named for the German electronics industrialist Werner von i
+
Siemens. rIl v
When resistance is positive, as it is in most cases, a resistor consumes power. A B
resistor’s instantaneous power consumption can be written one of two ways. Figure 1.2 Resistor.
- 1
PO=RE (=2 (1) (1.4)

As the resistance approaches infinity, we have what is known as an open circuit: No current flows but a
non-zero voltage can appear across the open circuit.” As the resistance becomes zero, the voltage goes to
zero for a non-zero current flow. This situation corresponds to a short circuit. A superconductor physically
realizes a short circuit.

The capacitor stores charge and the relationship between the charge stored and 4
the resultant voltage is ¢ = Cv. The constant of proportionality, the capacitance, has Ci :’
units of farads (F), and is named for the English experimental physicist Michael T =
Faraday. As current is the rate of change of charge, the v-i relation can be expressed

Figure 1.3 Capacitor.
in differential or integral form.

i(t):C% or v(t)=% Iimi(a)da (1.5)

If the voltage across a capacitor is constant, then the current flowing into it equals zero. In this situation,
the capacitor is equivalent to an open circuit. The power consumed/produced by a voltage applied to a

capacitor depends on the product of the voltage and its derivative.

N O] (1.6)
PO —

This result means that a capacitor’s total energy expenditure up to time ¢ is concisely given by
E(t)=%Cv2(t) (1.7)
This expression presumes the fundamental assumption of circuit theory: All voltages and currents in

any circuit are zero in the far distant past (1 =—<).

The inductor stores magnetic flux, with larger valued inductors capable of storing more flux.

(D As the resistance approaches infinity, we have what is known as an open circuit: No current flows but a non-zero voltage can appear
across the open circuit.

PESC: BTG R, s RIFTIE TR JERiiE, AR AR,

(2 The inductor stores magnetic flux, with larger valued inductors capable of storing more flux.
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Inductance has units of henries (H), and is named for the American physicist Joseph Henry. The differential

and integral forms of the inductor’s v-i relation are

s 2 ARy o L ee
1(1)—LT or l(t)—zjlrxv(a)da (1.8)
The power consumed/produced by an inductor depends on the product of the inductor current and its

derivative

di(?)

e (1.9)
dt

p(1)=Li(")

and its total energy expenditure up to time 7 is given by

i g
E(,)ziu-(,) (1.10)
i i

i + +

- Vs v Ig v
i ¥ 5y ',

o (a) (b)

Figure 1.4 Inductor. Figure 1.5 (a) The voltage source (b) the current source.

Sources of voltage and current are also circuit elements, but they are not linear in the strict sense of
linear systems. For example, the voltage source’s v-i relation is v = v, regardless of what the current might
be. As for the current source, i=—i regardless of the voltage. Another name for a constant-valued voltage
source is battery, which can be purchased in any supermarket. Current sources, on the other hand, are much

harder to acquire; we’ll learn the reason for this later.

1.3 Ideal and Real-World Circuit Elements

Source and linear circuit elements are ideal circuit elements. One central notion of circuit theory is
combining the ideal elements to describe how physical elements operate in the real world. For example, the
1kQ resistor you can hold in your hand is not exactly an ideal 1 kQQ resistor. First of all, physical devices are
manufactured to close to lerances (the tighter the tolerance, the more money you pay), but they never
possess exactly their advertised values. The fourth band on resistors specifies their tolerance; 10% is
common. More pertinent to the current discussion is another deviation from the ideal: If a sinusoidal voltage
is placed acrossa physical resistor, the current will not be exactly proportional to it as frequency becomes
high, say above 1 MHz. At very high frequencies, the way the resistor is constructed introduces inductance
and capacitance effects.” Thus, a smart engineer must be aware of the frequency ranges over which his
ideal models match reality well.

On the other hand, physical circuit elements can be readily found that well approximate the ideal, but

they will always deviate from the ideal in some way. For example, a flashlight battery, like a C-cell, roughly

(D At very high frequencies, the way the resistor is constructed introduces inductance and capacitance effects.
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corresponds to a 1.5 V voltage source. However, it ceases to be modeled by a voltage source capable of

supplying any current (That’s what ideal ones can do!) when the resistance of the light bulb is too small.

n 1.4 Electric Circuits and Interconnection Laws

A circuit connects circuit elements together in a specific configuration designed to transform the source
signal (originating from a voltage or current source) into another signal, the output that corresponds to the
current or voltage defined for a particular circuit element. A simple resistive circuit is shown in Figure 1.6.This

circuit is the electrical embodiment of a system with its input provided by a source system producingy;, (7).

va(2) Voull)
Source System [——>

(b)

Figure 1.6 (a) the circuit that performs a signal processing function (b ) the block diagram that corresponds to the circuit.

To understand what this circuit accomplishes, we want to determine the voltage across the resistor
labeled by its value R,. Recasting this problem mathematically, we need to solve some set of equations so
that we relate the output voltage v, to the source voltage. It would be simple, a little too simple at this
point, if we could instantly write down the equation that relates these two voltages. Until we have more
knowledge about how circuits work, we must write a set of equations that allow us to find all the
voltagesand currents that can be defined for every circuit element.” Because we have a three-element
circuit, we have a total of six voltages and currents that must be either specified or determined. You can
define the directions for positive current flow and positive voltage drop any way you like. Once the values
for the voltages and currents are calculated, they may be positive or negative according to your definition.
When two people define variables according to their individual preferences, the signs of their variables may
not agree, but current flow and voltage drop values for each element will agree. Do recall in defining your
voltage and current variables that the v-i relations for the elements presume that positive current flow is in
the same direction as positive voltage drop. Once you define voltages and currents, we need six
non-redundant equations to solve for the six unknown voltages and currents. By specifying the source, we
have one; this amounts to providing the source’s v-i relation. The v-i relations for the resistors give us two
more. We are only halfway there; where do we get the other three equations we need?

What we need to solve for every circuit problem are mathematical statements that express how the
circuit elements are interconnected. In other words, we need the laws that govern the electrical connection
of circuit elements. First of all, the places where circuit elements attach to each other are called nodes. Two

nodes are explicitly indicated in Figure 1.6; a third is at the bottom where the voltage source and resistor R,

(D Until we have more knowledge about how circuits work, we must write a set of equations that allow us to find all the voltages and

currents that can be defined for every circuit element.
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