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Preface

The experimental discovery of Bose-Einstein condensation in trapped
atomic clouds opened up the exploration of quantum phenomena in a qual-
itatively new regime. Our aim in the present work is to provide an intro-
duction to this rapidly developing field.

The study of Bose-Einstein condensation in dilute gases draws on many
different subfields of physics. Atomic physics provides the basic methods
for creating and manipulating these systems, and the physical data required
to characterize them. Because interactions between atoms play a key role
in the behaviour of ultracold atomic clouds, concepts and methods from
condensed matter physics are used extensively. Investigations of spatial and
temporal correlations of particles provide links to quantum optics, where
related studies have been made for photons. Trapped atomic clouds have
some similarities to atomic nuclei, and insights from nuclear physics have
been helpful in understanding their properties.

In presenting this diverse range of topics we have attempted to explain
physical phenomena in terms of basic principles. In order to make the pre-
sentation self-contained, while keeping the length of the book within reason-
able bounds, we have been forced to select some subjects and omit others.
For similar reasons and because there now exist review articles with exten-
sive bibliographies, the lists of references following each chapter are far from
exhaustive.

This book originated in a set of lecture notes written for a graduate-
level one-semester course on Bose—Einstein condensation at the University
of Copenhagen. The first edition was completed in 2001. For this second edi-
tion we have updated the manuscript and added three new chapters on opti-
cal lattices, lower dimensions and molecules. We employ SI units throughout
the text. As for mathematical notation we generally use ~ to indicate ‘is of
order’, while ~ means ‘is asymptotically equal to’ as in (1 — 2)~! ~ 1 4 ¢.
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The symbol ~ means ‘is approximately equal to’. Definitions are indicated
by =, and o« means ‘is proportional to’. However, the reader should be
aware that strict consistency in these matters is not possible.

We have received much inspiration from contacts with our colleagues in
both experiment and theory. In particular we thank Gordon Baym, Georg
Bruun, Alexander Fetter, Henning Heiselberg, Andreas Isacsson, George
Kavoulakis, Pietro Massignan, Ben Mottelson, Jorg Helge Miiller, Alexandru
Nicolin, Nicolai Nygaard, Olav Syljuasen, Gentaro Watanabe and Mikhail
Zvonarev for many stimulating and helpful discussions over the past few
years. Wolfgang Ketterle kindly provided us with the cover illustration and
Fig. 13.2, and we thank Eric Cornell for allowing us to use Fig. 9.3. We
are grateful to Mikhail Zvonarev for providing us with the data for Figs.
15.2-4. The illustrations in the text have been prepared by Janus Schmidt
and Alexandru Nicolin, whom we thank for a pleasant collaboration. It is
a pleasure to acknowledge the support of Simon Capelin, Susan Francis,
Lindsay Barnes, and Jonathan Ratcliffe at the Cambridge University Press,
and the careful copy-editing of the manuscript by Brian Watts and Jon
Billam.
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1

Introduction

The experimental realization in 1995 of Bose-Einstein condensation in di-
lute atomic gases marked the beginning of a very rapid development in the
study of quantum gases. The initial experiments were performed on vapours
of rubidium [1], sodium [2], and lithium [3].! So far, the atoms 'H, "Li, 2*Na,
39K, 41K, 52Cr, 85Rb, 87Rb, 133Cs, 170Yb, 174Yb and ‘He* (the helium atom
in an excited state) have been demonstrated to undergo Bose-Einstein con-
densation. In related developments, atomic Fermi gases have been cooled to
well below the degeneracy temperature, and a superfluid state with corre-
lated pairs of fermions has been observed. Also molecules consisting of pairs
of fermionic atoms such as ®Li or °K have been observed to undergo Bose—
Einstein condensation. Atoms have been put into optical lattices, thereby
allowing the study of many-body systems that are realizations of models
used in condensed matter physics. Although the gases are very dilute, the
atoms can be made to interact strongly, thus providing new challenges for
the description of strongly correlated many-body systems. In a period of
less than ten years the study of dilute quantum gases has changed from an
esoteric topic to an integral part of contemporary physics, with strong ties
to molecular, atomic, subatomic and condensed matter physics.

The dilute quantum gases differ from ordinary gases, liquids and solids
in a number of ways, as we shall now illustrate by giving values of physi-
cal quantities. The particle density at the centre of a Bose-Einstein con-
densed atomic cloud is typically 103-10'® cm™3. By contrast, the density
of molecules in air at room temperature and atmospheric pressure is about
10'® cm™3. In liquids and solids the density of atoms is of order 10?2 cm™—3,
while the density of nucleons in atomic nuclei is about 1038 cm™3.

To observe quantum phenomena in such low-density systems, the tem-

1 Numbers in square brackets are references, to be found at the end of each chapter.



2 Introduction

perature must be of order 107° K or less. This may be contrasted with
the temperatures at which quantum phenomena occur in solids and liquids.
In solids, quantum effects become strong for electrons in metals below the
Fermi temperature, which is typically 10*-10° K, and for phonons below
the Debye temperature, which is typically of order 10? K. For the helium
liquids, the temperatures required for observing quantum phenomena are of
order 1 K. Due to the much higher particle density in atomic nuclei, the
corresponding degeneracy temperature is about 10! K.

The path that led in 1995 to the first realization of Bose-Einstein conden-
sation in dilute gases exploited the powerful methods developed since the
mid 1970s for cooling alkali metal atoms by using lasers. Since laser cool-
ing alone did not produce sufficiently high densities and low temperatures
for condensation, it was followed by an evaporative cooling stage, in which
the more energetic atoms were removed from the trap, thereby cooling the
remaining atoms.

Cold gas clouds have many advantages for investigations of quantum phe-
nomena. In a weakly interacting Bose—Einstein condensate, essentially all
atoms occupy the same quantum state, and the condensate may be described
in terms of a mean-field theory similar to the Hartree—Fock theory for atoms.
This is in marked contrast to liquid “He, for which a mean-field approach
is inapplicable due to the strong correlations induced by the interaction
between the atoms. Although the gases are dilute, interactions play an im-
portant role as a consequence of the low temperatures, and they give rise to
collective phenomena related to those observed in solids, quantum liquids,
and nuclei. Experimentally the systems are attractive ones to work with,
since they may be manipulated by the use of lasers and magnetic fields. In
addition, interactions between atoms may be varied either by using different
atomic species or, for species that have a Feshbach resonance, by changing
the strength of an applied magnetic or electric field. A further advantage is
that, because of the low density, ‘microscopic’ length scales are so large that
the structure of the condensate wave function may be investigated directly
by optical means. Finally, these systems are ideal for studies of interference
phenomena and atom optics.

The theoretical prediction of Bose—Einstein condensation dates back more
than 80 years. Following the work of Bose on the statistics of photons [4],
Einstein considered a gas of non-interacting, massive bosons, and concluded
that, below a certain temperature, a non-zero fraction of the total number
of particles would occupy the lowest-energy single-particle state [5]. In 1938
Fritz London suggested the connection between the superfluidity of liquid
“He and Bose-Einstein condensation [6]. Superfluid liquid “He is the pro-
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totype Bose-Einstein condensate, and it has played a unique role in the
development of physical concepts. However, the interaction between helium
atoms is strong, and this reduces the number of atoms in the zero-momentum
state even at absolute zero. Consequently it is difficult to measure directly
the occupancy of the zero-momentum state. It has been investigated ex-
perimentally by neutron scattering measurements of the structure factor at
large momentum transfers [7], and the results are consistent with a relative
occupation of the zero-momentum state of about 0.1 at saturated vapour
pressure and about 0.05 near the melting pressure [8].

The fact that interactions in liquid helium reduce dramatically the oc-
cupancy of the lowest single-particle state led to the search for weakly in-
teracting Bose gases with a higher condensate fraction. The difficulty with
most substances is that at low temperatures they do not remain gaseous,
but form solids or, in the case of the helium isotopes, liquids, and the effects
of interaction thus become large. In other examples atoms first combine
to form molecules, which subsequently solidify. As long ago as in 1959
Hecht [9] argued that spin-polarized hydrogen would be a good candidate
for a weakly interacting Bose gas. The attractive interaction between two
hydrogen atoms with their electronic spins aligned was then estimated to
be so weak that there would be no bound state. Thus a gas of hydrogen
atoms in a magnetic field would be stable against formation of molecules
and, moreover, would not form a liquid, but remain a gas to arbitrarily low
temperatures.

Hecht’s paper was before its time and received little attention, but his
conclusions were confirmed by Stwalley and Nosanow [10] in 1976, when im-
proved information about interactions between spin-aligned hydrogen atoms
was available. These authors also argued that because of interatomic inter-
actions the system would be a superfluid as well as being Bose-Einstein
condensed. This latter paper stimulated the quest to realize Bose—Einstein
condensation in atomic hydrogen. Initial experimental attempts used a
high magnetic field gradient to force hydrogen atoms against a cryogeni-
cally cooled surface. In the lowest-energy spin state of the hydrogen atom,
the electron spin is aligned opposite the direction of the magnetic field (H|),
since then the magnetic moment is in the same direction as the field. Spin-
polarized hydrogen was first stabilized by Silvera and Walraven [11]. Interac-
tions of hydrogen with the surface limited the densities achieved in the early
experiments, and this prompted the Massachusetts Institute of Technology
(MIT) group led by Greytak and Kleppner to develop methods for trapping
atoms purely magnetically. In a current-free region, it is impossible to create
a local maximum in the magnitude of the magnetic field. To trap atoms by
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the Zeeman effect it is therefore necessary to work with a state of hydrogen
in which the electronic spin is polarized parallel to the magnetic field (HT).
Among the techniques developed by this group is that of evaporative cooling
of trapped gases, which has been used as the final stage in all experiments
to date to produce a gaseous Bose-Einstein condensate. Since laser cooling
is not feasible for hydrogen, the gas was precooled cryogenically. After more
than two decades of heroic experimental work, Bose-Einstein condensation
of atomic hydrogen was achieved in 1998 [12].

As a consequence of the dramatic advances made in laser cooling of alkali
atoms, such atoms became attractive candidates for Bose-Einstein conden-
sation, and they were used in the first successful experiments to produce
a gaseous Bose—Einstein condensate. In later developments other atoms
have been shown to undergo Bose-Einstein condensation: metastable He
atoms in the Jowest-energy electronic spin-triplet state [13,14], and ytter-
bium [15,16] and chromium atoms [17] in their electronic ground states.

The properties of interacting Bose fluids are treated in many texts. The
reader will find an illuminating discussion in the volume by Noziéres and
Pines [18]. A collection of articles on Bose-Einstein condensation in vari-
ous systems, prior to its discovery in atomic vapours, is given in [19], while
more recent theoretical developments have been reviewed in [20]. The 1998
Varenna lectures are a useful general reference for both experiment and the-
ory on Bose-Einstein condensation in atomic gases, and contain in addition
historical accounts of the development of the field [21]. For a tutorial review
of some concepts basic to an understanding of Bose-Einstein condensation
in dilute gases see Ref. [22]. The monograph [23] gives a comprehensive
account of Bose—Einstein condensation in liquid helium and dilute atomic
gases.

1.1 Bose—Einstein condensation in atomic clouds

Bosons are particles with integer spin. The wave function for a system of
identical bosons is symmetric under interchange of the coordinates of any
two particles. Unlike fermions, which have half-odd-integer spin and an-
tisymmetric wave functions, bosons may occupy the same single-particle
state. An estimate of the transition temperature to the Bose—Einstein con-
densed state may be made from dimensional arguments. For a uniform gas
of free particles, the relevant quantities are the particle mass m, the num-
ber of particles per unit volume n, and the Planck constant h = 27wh. The
only quantity having dimensions of energy that can be formed from h, n,
and m is h2n2/3 /m. By dividing this energy by the Boltzmann constant



1.1 Bose-FEinstein condensation in atomic clouds 5
k we obtain an estimate of the condensation temperature 7,
1i2n2/3

mk

Borir (1.1)

Here C is a numerical factor which we shall show in the next chapter to
be equal to approximately 3.3. When (1.1) is evaluated for the mass and
density appropriate to liquid He at saturated vapour pressure one obtains
a transition temperature of approximately 3.13 K, which is close to the
temperature below which superfluid phenomena are observed, the so-called
lambda point? (Th= 2.17 K at saturated vapour pressure).

An equivalent way of relating the transition temperature to the parti-
cle density is to compare the thermal de Broglie wavelength Ay with the
mean interparticle spacing, which is of order n=1/3. The thermal de Broglie
wavelength is conventionally defined by

2mh2 4/a
M 02

At high temperatures, it is small and the gas behaves classically. Bose—
Einstein condensation in an ideal gas sets in when the temperature is so low
that Ar is comparable to n~!/3. For alkali atoms, the densities achieved
range from 103 cm ™2 in early experiments to 10'4-10'® ¢cm™2 in more re-
cent ones, with transition temperatures in the range from 100 nK to a few
uK. For hydrogen, the mass is lower and the transition temperatures are
correspondingly higher.

In experiments, gases are non-uniform, since they are contained in a trap,
which typically provides a harmonic-oscillator potential. If the number of
particles is N, the density of gas in the cloud is of order N/R3, where the
size R of a thermal gas cloud is of order (kT/mw?)/?, wy being the angu-
lar frequency of single-particle motion in the harmonic-oscillator potential.
Substituting the value of the density n ~ N/R3 at T' = T, into Eq. (1.1),
one sees that the transition temperature is given by

kT. = CihwoN/3, (1.3)

where C] is a numerical constant which we shall later show to be approx-
imately 0.94. The frequencies for traps used in experiments are typically
of order 10?2 Hz, corresponding to wy ~ 10% s~!, and therefore, for parti-
cle numbers in the range from 10* to 10%, the transition temperatures lie
in the range quoted above. Estimates of the transition temperature based

2 The name lambda point derives from the shape of the experimentally measured specific heat as
a function of temperature, which near the transition resembles the Greek letter \.



