O'REILLY

2B 701, ¢ S | brian d foy &

LR

5@ Perl zam

Mastering Perl

brian d foy &

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo K@NZ{={|MN&s

O’Reilly Media, Inc 4 & # X 5 & jjft i JR

MR REAFHRYE

BEHEMRKE (CIP) BiFE

Fiiif Perl 55 2 bt 93¢/ (3€) #&EL (Foy, B.D.)ZE . —52
ElA . —mist: ZRFE K= AEE, 2014.10

45 Mastering Perl, 2E

ISBN 978-7-5641-5002-0

L@ F§ IL OfF-- O ©PERLEE - RFikit -
Fr V. © TP312

rh AR A B 508 CIP $di i (2014) 45115564 2

(LA RRAUR AL R EID
B 10-2013-372 5

©2014 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2014. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights

to publish and sell the same.
All rights reserved including the rights of reproduction in whole or in part in any form.
3 LB & & O'Reilly Media, Inc. # 52 2014

FELHEPRRE A B K F ARt RR 2014 2L ¥ 6P BR &) o RR A 4K R A £ i RRAR Ao 4K B AR89 FT A & —— O’Reilly
Media, Inc. #9# T,

WBALHTAR , REHRHFT, KHAEMEoFfo 2R RFUETH X4,

Kt Perl 5 2 it GZEDRR)

B R Fr: AR
Ith hb. FARIYRRR2 S M4 . 210096

AR A L
%] Hik: http://www.seupress.com

HL [. press @seupress.com

En Rill s T RS = B R PR 2y =]

A, 787K x 980k 16 A

gk 25

. 490 T

e 20144610 A 1 IR

K 2014410 A5 1 RENK

‘5. ISBN 978-7-5641-5002-0

ffr: 74.00 ¢

A EBE AR NE, FEESENPKA, BiF (f5H). 025-83791830

eI FHIZH

Preface

Mastering Perl is the third book in the series starting with Learning Perl, which taught
you the basics of Perl syntax, progressing to Intermediate Perl, which taught you how
to create reusable Perl software, and finally this book, which pulls everything together
to show you how to bend Perl to your will. This isn’t a collection of clever tricks, but a
way of thinking about Per]l programming so you integrate the real-life problems of
debugging, maintenance, configuration, and other tasks you’ll encounter as a working
programmer. This book starts you on your path to becoming the person with the an-
swers, and, failing that, the person who knows how to find the answers or discover the
problem.

Becoming a Master

This book isn't going to make you a Perl master; you have to do that for yourself by
programming a lot of Perl, trying a lot of new things, and making a lot of mistakes. I'm
going to help you get on the right path, but the road to mastery is one of self-reliance
and independence. As a Per]l master, you'll be able to answer your own questions as well
as those of others.

In the golden age of guilds, craftsmen followed a certain path, both literally and figu-
ratively, as they mastered their craft. They started as apprentices and would do the boring
bits of work until they had enough skill to become the more trusted journeyman. The
journeyman had greater responsibility but still worked under a recognized master.
When they had learned enough of the craft, the journeymen would produce a “master
work” to prove their skill. If other masters deemed it adequately masterful, the jour-
neyman became a recognized master himself.

The journeymen and masters also traveled (although people dispute if that’s where the
“journey” part of the name came from) to other masters, where they would learn new
techniques and skills. Each master knew things the others didn’t, perhaps deliberately

Xi

guarding secret methods or doing it in a different way. Part of the journeymen’s educa-
tion was learning from more than one master.

Interactions with other masters and journeymen continued the master’s education. He
learned from those masters with more experience, and learned from himself as he taught
journeymen, who also taught him as they brought skills they learned from other masters.
A master never stops learning.

The path an apprentice followed affected what he learned. An apprentice who studied
with more masters was exposed to many more perspectives and ways of teaching, all of
which he could roll into his own way of doing things. Odd things from one master could
be exposed, updated, or refined by another, giving the apprentice a balanced view on
things. Additionally, although the apprentice might be studying to be a carpenter or a
mason, different masters applied those skills to different goals, giving the apprentice a
chance to learn different applications and ways of doing things.

Unfortunately, programmers don’t operate under the guild system. Most Perl program-
mers learn Perl on their own (I'm sad to say, as a Perl instructor), program on their own,
and never get the advantage of a mentor. That’s how I started. I bought the first edition
of Learning Perl and worked through it on my own. T was the only person I knew who
had even heard of Perl, although I’d seen it around a couple of times. Most people used
what others had left behind. Soon after that, I discovered comp.lang.perl.misc and started
answering any question that I could. It was like self-assigned homework. My skills im-
proved and I got almost instantaneous feedback, good and bad, and Ilearned even more
Perl. I ended up with a job that allowed me to program Perl all day, but I was the only
person in the company doing that. I kept up my homework on comp.lang.perl.misc.

I eventually caught the eye of Randal Schwartz, who took me under his wing and started
my Perl apprenticeship. He invited me to become a Perl instructor with Stonehenge
Consulting Services, and then my real Perl education began. Teaching, meaning figuring
out what you know and how to explain it to others, is the best way to learn a subject.
After a while of doing that, I started writing about Perl, which is close to teaching,
although with correct grammar (mostly) and an editor to correct mistakes.

That presents a problem for Mastering Perl, which I designed to be the third book of a
trilogy starting with Learning Perland Intermediate Perl, both of which I've had a hand
in. Each of those are about 300 pages, and that’s what I'm limited to here. How do I
encapsulate the years of my experience in such a slim book?

In short, I can’t. I'll teach you what I think you should know, but you’ll also have to learn
from other sources. As with the old masters, you can’t just listen to one person. You
need to find other masters too, and that’s also the great thing about Perl: you can do
things in so many different ways. Some of these masters have written very good books,
from this publisher and others, so 'm not going to duplicate those topics here, as I
discuss in a moment.

xii | Preface

What It Means to Be a Master

This book takes a different tone from Learning Perl and Intermediate Perl, which we
designed as tutorial books. Those mostly cover the details of the Perl language and only
delve a little into the practice of programming. Mastering Perl, however, puts more
responsibility on you, the reader.

Now that you've made it this far in Perl, you're working on your ability to answer your
own questions and figure out things on your own, even if that’s a bit more work than
simply asking someone. The very act of doing it yourself builds your experience and
prevents you from annoying your coworkers with extra work.

Although I don’t cover other languages in this book, like Advanced Perl Programming,
First Edition did and Mastering Regular Expressions does, you should learn some other
languages. This informs your Perl knowledge and gives you new perspectives, some that
make you appreciate Perl more and others that help you understand its limitations.

And, as a master, you will run into Perl’s limitations. I like to say that if you don’t have
a list of five things you hate about Perl and the facts to back them up, you probably
haven’t done enough Perl; see “My Frozen Perl 2011 Keynote” (http://bit.ly/IDI5LC). It’s
not really Perl’s fault. You’ll get that with any language. The mastery comes from know-
ing these things and still choosing Perl because its strengths outweigh the weaknesses
for your application. You're a master because you know both sides of the problem and
can make an informed choice that you can explain to others.

All of that means that becoming a master involves work, reading, and talking to other
people. The more you do, the more you learn. There’s no shortcut to mastery. You may
be able to learn the syntax quickly, as in any other language, but that will be the tiniest
portion of your experience. Now that you know most of Perl, you’ll probably spend your
time reading some of the “meta”-programming books that discuss the practice of pro-
gramming rather than just slinging syntax. Those books will probably use a language
that’s not Perl, but I've already said you need to learn some other languages, if only to
be able to read these books. As a master, you're always learning.

Becoming a master involves understanding more than you need to, doing quite a bit of
work on your own, and learning as much as you can from the experience of others. It’s
not just about the code you write, because you have to deal with the code from many
other authors too.

It may sound difficult, but that’s how you become a master. It’s worth it, so don’t give
up. Good luck!

Preface | xiii

Who Should Read This Book

I wrote this book as a successor to Intermediate Perl, which covered the basics of ref-
erences, objects, and modules. I'll assume that you already know and feel comfortable
with those features. Where possible, I make references to Intermediate Perl in case you
need to refresh your skills on a topic.

If you're coming directly from another language and haven’t used Perl yet, or have only
used it lightly, you might want to skim Learning Perl and Intermediate Perl to get the
basics of the language. Still, you might not recognize some of the idioms that come with
experience and practice. I don’t want to tell you not to buy this book (hey, I need to pay
my mortgage!), but you might not get the full value I intend, at least not right away.

How to Read This Book

I'm not writing a third volume of “Yet More Perl Features.” I want to teach you how to
learn Perl on your own. I'm setting you on your own path to mastery, and as an ap-
prentice you'll need to do some work on your own. Sometimes this means I'll show you
where in the Perl documentation to get the answers (meaning I can use the saved space
to talk about other topics).

You don't need to read the chapters in any particular order, and the material isn't cu-
mulative. If there’s something that doesn’t interest you, you can probably safely skip it.

If you want to know more about a subject, check out the references I include at the end
of each chapter.

What Should You Know Already?

I'll presume that you already know everything that we covered in Learning Perl and
Intermediate Perl. By we, I mean coauthors Randal Schwartz, Tom Phoenix, and myself.

Most importantly, you should know these subjects, each of which imply knowledge of
other subjects:

« Using Perl modules

 Writing Perl modules

« References to variables, subroutines, and filehandles

Basic regular expression syntax and workings
« Object-oriented Perl
If I want to discuss something not in either of those books, I'll explain it in a bit more

depth. Even if we did cover it in the previous books, I might cover it again just because
it’s that important.

xiv | Preface

What | Cover

After learning the basic syntax of Perl in Learning Perl and the basics of modules and
team programming in Intermediate Perl, the next thing you need to learn are the idioms
of Perl and the integration of the skills that you already have to create robust and scalable
applications that other people can use without your help.

I'll cover some subjects you've seen in those two books, but in more depth. As we said
in Learning Perl, we sometimes told white lies to simplify the details and to get you
going as soon as possible without getting bogged down. Now it’s time to get a bit dirty
in the bogs.

Don’t mistake my coverage of a subject for an endorsement, though. There are millions
of Perl programmers in the world, and they all have their own way of doing things. Part
of becoming a Per]l master involves reading quite a bit of Perl even if you wouldn’t write
that Perl yourself. I'll endeavor to tell you when I think you shouldn’t do something, but
that’s really just my opinion. As you strive to be a good programmer, you’ll need to know
more than you’ll use. Sometimes I'll show things I don’t want you to use, but I know
you’ll see in code from other people. Oh well, it’s not a perfect world.

Not all programming is about adding or adjusting features in code. Sometimes it’s pull-
ing code apart to inspect it and watch it do its magic. Other times it’s about getting rid
of code that you don’t need. The practice of programming is more than creating appli-
cations. It’s also about managing and wrangling code. Some of the techniques I'll show
are for analysis, not your own development.

What | Don’t Cover

As I talked over the idea of this book with the editors, we decided not to duplicate the
subjects more than adequately covered by other books. You need to learn from other
masters too, and I don't really want to take up more space on your shelf than I really
need. Ignoring those subjects gives me the double bonus of not writing those chapters
and using that space for other things. You should already have read those other books
anyway.

That doesn’t mean that you get to ignore those subjects, though, and where appropriate
I'll point you to the right book. In Appendix A, I list some books I think you should add
to your library as you move toward Perl mastery. Those books are by other Perl masters,
each of whom has something to teach you. At the end of most chapters I point you
toward other resources as well. A master never stops learning.

Since you're already here, though, I'll just give you the list of topics I'm explicitly avoid-
ing, for whatever reason: Perl internals, embedding Perl, threads, best practices, object-
oriented programming, source filters, and dolphins. This is a dolphin-safe book.

Preface | xv

Structure of This Book

Preface
An introduction to the scope and intent of this book.

Chapter 1, Advanced Regular Expressions
More regular expression features, including global matches, lookarounds, readable
regexes, and regex debugging.

Chapter 2, Secure Programming Techniques
Avoid some common programing problems with the techniques in this chapter,
which covers taint checking and gotchas.

Chapter 3, Perl Debuggers
A little bit about the Perl debugger, writing your own debugger, and using the de-
buggers others wrote.

Chapter 4, Profiling Perl
Before you set out to improve your Perl program, find out where you should con-
centrate your efforts.

Chapter 5, Benchmarking Perl
Figure out which implementations do better on time, memory, and other metrics,
along with cautions about what your numbers actually mean.

Chapter 6, Cleaning Up Perl
Wrangle Perl code you didn’t write (or even code you did write) to make it more
presentable and readable by using Perl::Tidy or Perl::Critic.

Chapter 7, Symbol Tables and Typeglobs
Learn how Perl keeps track of package variables and how you can use that mecha-
nism for some powerful Perl tricks.

Chapter 8, Dynamic Subroutines
Define subroutines on the fly and turn the tables on normal procedural program-
ming. Iterate through subroutine lists rather than data to make your code more
effective and easy to maintain.

Chapter 9, Modifying and Jury-Rigging Modules
Fix code without editing the original source so you can always get back to where
you started.

Chapter 10, Configuring Perl Programs
Let your users configure your programs without touching the code.

Chapter 11, Detecting and Reporting Errors
Learn how Perl reports errors, how you can detect errors Perl doesn’t report, and
how to tell your users about them.

xvi | Preface

Chapter 12, Logging
Let your Perl program talk back to you by using Log4perl, an extremely flexible and
powerful logging package.

Chapter 13, Data Persistence
Store data for later use in other programs, a later run of the same program, or to

send as text over a network.

Chapter 14, Working with Pod
Translate plain ol’ documentation into any format that you like, and test it too.

Chapter 15, Working with Bits
Use bit operations and bit vectors to efficiently store large data.

Chapter 16, The Magic of Tied Variables
Implement your own versions of Perl’s basic data types to perform fancy operations
without getting in the user’s way.

Chapter 17, Modules as Programs
Write programs as modules to get all of the benefits of Perl’s module distribution,

installation, and testing tools.

Appendix A, Further Reading
Explore these resources to continue your Perl education.

Appendix B, brian’s Guide to Solving Any Perl Problem
My popular step-by-step guide to solving any Perl problem. Follow these steps to
improve your troubleshooting skills.

Conventions Used in This Book

The following typographic conventions are used in this book:

Italics
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Preface | xvii

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://www.masteringperl.org/.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Mastering Perl, Second Edition, by brian d
foy (O’Reilly). Copyright 2014 brian d foy, 978-1-449-39311-3”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

»«) Safari Books Online (www.safaribooksonline.com) is an on-

Safa rl demand digital library that delivers expert content in both

BooksOntire book and video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xviii | Preface

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/mastering-perl-2e.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people helped me during the year I took to write the first edition of this book.
The readers of the Mastering Perl mailing list gave constant feedback on the manuscript
and sent patches, which I mostly applied as is, including those from Andy Armstrong,
David H. Adler, Renée Backer, Anthony R. J. Ball, Daniel Bosold, Alessio Bragadini,
Philippe Bruhat, Katharine Farah, Shlomi Fish, Deyan Ginev, David Golden, Bob
Goolsby, Ask Bjern Hansen, Jarkko Hietaniemi, Joseph Hourcle, Adrian Howard, Offer
Kaye, Stefan Lidman, Eric Maki, Joshua McAdams, Florian Merges, Jason Messmer,
Thomas Nagel, Xavier Noria, Manuel Pégourié-Gonnard, Les Peters, Bill Riker, Yitzchak
Scott-Thoennes, Ian Sealy, Sagar R. Shah, Alberto Simdes, Derek B. Smith, Kurt Star-
sinic, Adam Turoff, David Westbrook, and Evan Zacks. Many more people submitted
errata on the first edition. 'm quite reassured that their constant scrutiny kept me on
the right path.

Tim Bunce provided gracious advice about the profiling chapter, which includes
DBI::Profile, and Jeffrey Thalhammer updated me on the current developments with
his Perl: :Critic module (http://www.metacpan.org/module/Perl::Critic).

Preface | xix

Perrin Harkins, Rob Kinyon, and Randal Schwartz gave the manuscript of the first
edition a thorough beating at the end, and I'm glad I chose them as technical reviewers
because their advice is always spot-on. For the second edition, the input of Matthew
Horsfall and André Philipp were invaluable to me.

Allison Randal provided valuable Perl advice and editorial guidance on the project, even
though she probably dreaded my constant queries. Several other people from O’Reilly
helped; it takes much more than an author to create a book, so thank a random O’Reilly
employee next time you see one.

Finally, I have to thank the Perl community, which has been incredibly kind and sup-
portive over the many years that I've been part of it. So many great programmers and
managers helped me become a better programmer, and I hope this book does the same
for people just joining the crowd.

xx | Preface

Table of Contents

PIBEACE, s ¢ i s 70 mivs oio.v ain o i o wis & o oo Wi i 0014 9500 6 B 0 5 00 060 0.6 0308 050 3 0 & 5.9 xi
1. Advanced Regular EXpressions............cooveiiiiiiiiniiiieiiininesnnnennnnss 1
Readable Regexes, /x and (?#...) 1
Global Matching 3
Global Match Anchors 5
Recursive Regular Expressions 7
Repeating a Subpattern 7
Lookarounds 18
Lookahead Assertions, (2=PATTERN) and (?!PATTERN) 18
Lookbehind Assertions, (?<!PATTERN) and (?<=PATTERN) 22
Debugging Regular Expressions 25
The -D Switch 25
Summary 29
Further Reading 29

2. Secure Programming Techniques.coviiiiiiiiiiiiiieiniernnennnnnn. 31
Bad Data Can Ruin Your Day 31
Taint Checking 32
Warnings Instead of Fatal Errors 34
Automatic Taint Mode 35
mod_perl 35
Tainted Data 35

Side Effects of Taint Checking 36
Untainting Data 37
10::Handle::untaint 39
Hash Keys 40
Taint::Util 41

Choosing Untainted Data with Tainted Data 41

Symbolic References
Defensive Database Programming with DBI
List Forms of system and exec

Three-Argument open

sysopen

Limit Special Privileges
Safe Compartments

Safe Limitations
A Little Fun
Summary
Further Reading

Perl Debuggers.ovvvuiiiiiiiiniiiiiiiiiiiiriiieaieeas

Before You Waste Too Much Time
The Best Debugger in the World
Safely Changing Modules
Wrapping Subroutines
The Perl Debugger
Alternative Debuggers
Using a Different Debugger with -d
Devel::ptkdb
Devel::ebug
Devel::hdb
IDE Debuggers
EPIC
Komodo
Summary
Further Reading

PrOflNg POt oo cveomiiiivnsimevine i s om aiw s v sis wiso o s o

Finding the Culprit
The General Approach
Profiling DBI
Other DBI::Profile Reports
Making It Even Easier
Switching Databases
Devel:NYTProf
Writing My Own Profiler
Devel::LineCounter
Profiling Test Suites
Devel::Cover
Summary

oooooooooooooooo

42
45
47
48
49
49
50
56
56
57
58

61
61
62
63
64
67
68
68
68
70
71
72
72
72
72
73

75
75
79
81
85
86
87
89
90
90
91
91
93

iv

| Table of Contents

Further Reading 93

. BenchmarkingPerl.........ccouiiiiiiiiiiiiiiii it 95
Benchmarking Theory 95
Benchmarking Time 97
Comparing Code 100
Don’t Turn Off Your Thinking Cap 103
Isolating the Environment 107
Handling Outliers 109
Memory Use 111
The perlbench Tool 116
Summary 118
Further Reading 118

. CleaningUpPerl.......covvnniei i i s 121
Good Style 121
perltidy 122
Deobfuscation 124

De-encoding Hidden Source 124
Unparsing Code with B::Deparse 127
Perl::Critic 129
Creating My Own Perl::Critic Policy 132
Summary 133
Further Reading 134

. Symbol Tablesand Typeglobs.ccovuiiiiiiiiiiiiiii i 135

Package and Lexical Variables 135
Getting the Package Version 137
The Symbol Table 139
Typeglobs 141
Aliasing 144
Filehandle Arguments in Older Code 146
Naming Anonymous Subroutines 147
The Easy Way 148
Summary 149
Further Reading 150

. DynamicSubroutines.ooiiiiiiiiiiii i e 151
Subroutines as Data 151
Creating and Replacing Named Subroutines 155
Symbolic References 157
Iterating Through Subroutine Lists 159

Table of Contents | v

10.

Processing Pipelines
Self-Referencing Anonymous Subroutines
Method Lists
Subroutines as Arguments
Autoloaded Methods
Hashes as Objects
AutoSplit
Summary
Further Reading

Modifying and Jury-Rigging Modules.

Choosing the Right Solution
Sending Patches to the Author
Local Patches
Taking Over a Module
Forking
Starting Over on My Own

Replacing Module Parts

Subclassing
An ExtUtils:MakeMaker Example
Other Examples

Wrapping Subroutines

Summary

Further Reading

Configuring Perl Programs.coovvieiiniennnniennnns

Things Not to Do
Code in a Separate File
Better Ways
Environment Variables
Special Environment Variables
Turning on Extra Output
Command-Line Switches
The -s Switch
Getopt Modules
Configuration Files
ConfigReader:Simple
Config::IniFiles
Config::Scoped
Other Configuration Formats
Scripts with a Different Name
Interactive and Noninteractive Programs

161
162
162
163
167
169
170
171
171

173
173
173
175
175
176
176
176
179
181
184
184
186
186

187
187
189
190
190
191
191
193
194
195
200
200
201
201
202
202
203

vi

| Table of Contents

