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ABSTRACT

The classical analytical method of mathematical physics is described briefly
in the book. The method of separation of complex variable and the real principle
in mathematical physics are suggested which can be used to solve the problem of
partial deferential equations, which have odd order cross derivatives and the
background of anisotropic physics, in Cartesian, skew, cylindrical and spheri-
cal coordinates. The series of complex special functions which can be used to
solve anisotropic mathematical physics equation are developed. These complex
special functions in cylindrical coordinates include that complex cylindrical poly-
nomial, complex cylindrical-annular function, modified complex cylindrical
polynomial, complex spherical cylindrical polynomial, modified complex spher-
ical cylindrical polynomial, complex cylinder function, complex cylindrical sur-
face function and so on. It is noted that many complex special functions are or-
thogonal with particular weight over particular domain and these corresponding
complex cylindrical functions expansion theorems are also suggested. In solving
the problem of isotropic physics equation these complex special functions in cy-
lindrical coordinates can be reduced to the corresponding Bessel functions re-
spectively. The complex special functions in spherical coordinates include that
complex spherical polynomial and complex spherical function, associated com-
plex spherical function, complex spherical zonal function. associated complex
spherical zonal function, associated complex sphere function and so on. Some
corresponding theorems of complex spherical functions expansions are also sug-
gested. The author conducted a systematic study of some complex special func-
tions. By these complex special functions, many analytical solutions for the
problems of anisotropic physics are presented in the book and some numerical
results are presented.

The series of complex cylindrical function transforms are also developed
and several complex function transforms are presented. The basic properties and
tables of complex cylindrical function transform are also presented. For the
problem of isotropic physics, the complex cylindrical function transform is re-
duce to Hankel Transform. The anisotropic wave equations are solved by the
method of complex variables and complex special functions.

This book can be used as textbook or reference for senior or graduate students,

for faculty members in engineering mechanics, applied physics and mathematics.



Preface

Many of the problems facing physicists, engineers, and applied mathematicians in-
volve difficulties as governing partial differential equations which have odd order cross de-
rivatives with respective to multiply spatial variables. The classical method of mathemati-
cal physics which is based on the method of separation of variable, failed in analyzing these
partial differential equations. In solving partial differential equations for the mechanical re-
sponse of the laminated plate., the author and Professor Yang guangsong have developed a
new complex series method (NCST) . NCST succeeds in solving the boundary value prob-
lem of various partial deferential equations with constant coefficients. Many results can be
found in the book of “a new type complex series method for composite structure mechanics
and mathematical physics ” by the author. In further investigation. the new complex series
method is evolved into the method of separation of complex variable in this book and the
real principle in mathematical physics is suggested.

The partial differential equations in cylindrical coordinates and spherical coordinates
have always variable coefficients . Thus, another difficulty arose in solving the boundary
value problem of partial deferential equations, which have odd order cross derivatives, in
cylindrical coordinates and spherical coordinates. By the method of separation of complex
variable, the author developed the series of complex special functions to solve these mathe-
matical physics equations, which have always the background of anisotropic physics. These
complex special functions include two series, one kind is associated with cylindrical coordi-
nates and another kind is associated with spherical coordinates . Several ordinary differenti-
al equations are suggested. These complex special functions suggested newly in cylindrical
coordinates include that the complex cylindrical polynomial, complex cylindrical-annular
function, the modified complex cylindrical polynomial, complex spherical cylindrical poly-
nomial, modified complex spherical cylindrical polynomial, complex cylinder function,
complex cylindrical surface function and so on. It is noted that many special functions are
orthogonal with particular weight over particular domain and these corresponding theorems
of complex cylindrical functions expansions are suggested in this book. In solving the prob-
lem of isotropic physics equation these complex special functions in cylindrical coordinates
can be reduced to the corresponding Bessel functions respectively.

Those complex special functions suggested newly in spherical coordinates include that

complex spherical polynomials and complex spherical function, associated complex spheri-
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cal functions, complex spherical zonal function, associated complex spherical zonal func-
tion, associated complex sphere function and so on. Some corresponding theorems of com-
plex spherical functions expansions are also suggested in the book. Influenced by the monu-
mental work of Bessel and Legendre, the author conducted a systematic study of some
complex special functions. By these complex special functions, many analytical solutions
for the problems of anisotropic physics are presented in this book and some numerical re-
sults are presented.

Furthmore, the author developed the series of complex cylindrical function transforms
and several complex function transforms are presented in this book. The basic properties
and tables of complex cylindrical function transforms are also presented in this book. For
the problem of isotropic physics. the complex cylindrical function transform is reduce to
Hankel Transform. The anthor also used the method of separation of complex varlables and
complex speaical functions to solve some anisotropic wave equations in the book and some
analytical solutions are presented.

The book involves the problem of anisotropic physics . The partialdifferential equations
of anisotropic physics are different from those of isotropic physics and the corresponding
theories are different from those of isotropic physics. Therefore, the name of book presents
the notation of anisotropic mathematical physics. These special functions which are sugges-
ted in the book are in complex form and may be called as complex special functions. In some
sense, the methods of anisotropic mathematical physics may be associated with the com-
plex special functions and the methods of isotropic mathematical physics associated with
the classical special functions.

In hundreds ago the corresponding studies on the classical mathematical physics and
special functions were carried out by mathematicians by hand computation! Those were re-
ally the ground-breaking work. The study on the anisotropic mathematical physics and
complex special functions lasted several years since 1991. The author finished these works
with the help of computer. Since the research results are so many that the author decided to
present the results in this book. Due to short of time, the author is afraid of some possible

errors in the book and welcomes the readers to correct.

Ph. D Zhang Chengzong
2014. 10. 20
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Cylindrical coordinates
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Time

—Z— or the thermal diffusivity
Thickness of the shell or the plate
Skew angle between an oblique of the skew plate
and the r-axis or the angle between normal axis with
maximum conductivity and the direction in particular
coordinate in heat conduction problem
Distributed transverse load or heat source per unit
volume
Mass density
Special heat
Density
the transverse displacement
Temperature
Bessel function of the first kind of order p
Bessel function of the second kind of order p
Complex cylindrical polynomial of the first kind of
order 7p
Complex cylindrical function of the first kind
Complex cylindrical polynomial of the second kind
of order ip
The first complex cylindrical polynomial of the
third kind of order ip
The second complex cylindrical polynomial of the
third kind of order ip

Complex cylindrical-annular polynomial
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S, (x)e™ Complex cylindrical-annular function

I, x) Modified Bessel function of the first kind of order p

K, (x) Modified Bessel function of the second kind of or-
der p

%,,, () Modified complex cylindrical polynomial of the
first kind of order ip

K, (x) Modified complex cylindrical polynomial of the sec-
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H{ (1) The first modified complex cylindrical polynomial
of the third kind of order ip
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der p

Complex spherical cylindrical polynomial of the
first kind of order ip
Complex spherical cylindrical function

Complex spherical cylindrical polynomial of the
second kind of order ip

The first complex spherical cylindrical polynomial
of the third kind of order ip

The second complex spherical cylindrical polynomi-
al of the third kind of order ip

The first complex spherical cylindrical function of

the third kind
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