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Preface

This book focuses on the applications of convex optimization, a special class
of mathematical optimization techniques. Related problems arise in a variety of
applications and can be numerically solved in an efficient way. Likewise, diversified
applications have contributed to convex optimization and urged the development of
new optimization techniques. This intergrowth continues to produce new achieve-
ments. John Tukey said, “The best thing about being a statistician is that you get to
play in everyone’s backyard.” While, in our humble opinion, “The best thing about
being a convex optimization researcher is that you get to help build many ones’
backyards.”

As with any science worth its salt, convex optimization has a coherent formal
theory and a rambunctious experimental wing. There are already a number of
textbooks on the theory of convex optimization. So, we address the applications
in this book.

To thoroughly survey applications of convex optimization in this book is certainly
impossible due to the width and depth of covered topics. Here, we emphasize our
discussions on formulating empirical problems into formal convex optimization
problems in six representative categories.

In Chap.2, we introduce the supporting vector machines that are supervised
learning models for data classification. In Chap. 3, we study the parameter esti-
mation problems particularly on maximum likelihood estimation and expectation
maximization algorithms. In Chap. 4, we discuss the norm approximation and some
widely adopted regularization tricks with a special emphasis on recently hottest
sparsity features. In Chap.5, we present the positive semidefinite programming
problems, linear matrix inequalities, and their applications in control theory. In
Chap. 6, we give some interesting examples of convex relaxation methods. In
Chap. 7, we visit some frequently used geometric problems that can be handled as
convex optimization problems.

We believe that these representative applications well demonstrate the interplay
of convex optimization theory and applications.

The selection of topics is significantly influenced by the valuable textbook
Convex Optimization written by Prof. Stephen Boyd and Prof. Lieven Vandenberghe

vii



viii Preface

(a book that we require all my graduate students to carefully read for at least one
time). Convex Optimization contains much more topics than this book. However,
we make notably deeper discussions in each category that are mentioned above and
arrange some issues in a more synthetic way.

Similar to the writing purpose of Convex Optimization, our major goal is to
help the reader develop the skills needed to recognize and formulate convex
optimization problems that might be encountered in practice, since experiences of
many researchers had proven the great advantages to recognizing or formulating a
problem as a convex optimization problem. All derivation processes are presented
in details so that readers can teach themselves without any difficulties.

The draft of this book had been used for five years in a graduate course “Convex
Optimization and Applications” in Tsinghua University. The required background
of readers includes a solid knowledge of advanced calculus, linear algebra, basic
probability theory, and basic knowledge of convex optimization. This book is not
a text primarily about convex analysis or the mathematics of convex optimization.
Indeed, we hope this book will be used as a supplement textbook for several types
of courses, including operations research, computer science, statistics, data mining,
and many fields of science and engineering. Our teaching experiences showed that
the covered materials also serve as useful references for beginners who are major
in machine learning and control theory field. Moreover, upon the requests of many
readers, we plan to enrich the topics of this book in the coming years so that it could
serve students in other fields.

Finally, we would like to thank Prof. Stephen Boyd at the Department of
Electrical Engineering, Stanford University, for the helpful discussions. We would
like to thank Dr. Xiaoling Huang, Dr. Zhengpeng Wu, Mr. Kaidi Yang, Mr. Yingde
Chen, as well as Mr. Wei Guo for typing some parts of this book and Mr. Jiajie
Zhang for developing most Matlab code snippets as well as all figures for this book.
We would also like to thank many of our students for debugging the typos of this
book. Without their kind help, we cannot finish the tedious writing tasks in such a
short time.

Due to our limited knowledge, this book might contain mistakes and typos.
Please be kind to e-mail us when you find any problems within this book. We are
more than happy to revise this book upon your notice and extend its contents in the
following teaching process.

Beijing, China LiLi
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Chapter 1
Preliminary Knowledge

Abstract Convex analysis and convex optimization are the basis for our following
discussions. However, we will not recapitulate all the related issues in this book.
Indeed, we just briefly review the minimum required preliminary knowledge. Sev-
eral useful conclusions of linear algebra are also mentioned. Finally, we introduce
the CVX toolbox, based on which we will write the sample Matlab code snippets in
this book.

1.1 Nomenclatures

In this book, matrices are denoted by capital letters A, B,C,...,X,Y, Z. The
transpose of a matrix A is denoted as A”. The conjugate transpose of a matrix 4 is
denoted as A*. The inverse of a matrix A is denoted as A~!. The determinant of a
matrix A is denoted as det(A). The trace of a matrix A is denoted as Tr(A).

Multivariate vectors are denoted by bold minuscule lettersa, b, c, ..., x,y,z. All
vectors are column vectors, except we have special declarations.
One-dimensional variables are denoted by minuscule letters a, b, ¢, ..., x, y,z.

The sets are usually denoted by capital letters I,.. ., £2.

0 is a column vector of all 0 with appropriate dimensions, and 1 is a column
vector of all 1 with appropriate dimensions. I often denotes certain identity matrices
with proper dimensions.

A single bar | - | is used to denote a vector norm, absolute value, or complex
modulus, while a double bar || - || is reserved for denoting a matrix norm.

The 0-norm of a vector X = [x1,X2,...,X,]] € R" is defined as the number of
the nonzero entries of x.

The 1-norm of a vector x = [x1, X2,...,x,]7 € R" is defined as

el =) Ixil (1.1

i=1

© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2015 1
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2 1 Preliminary Knowledge

The 2-norm (also called Euclidean norm) of a vector x = [x;, x2,...,x,]" € R"
is defined as

(1.2)
Clearly, we have
n
|x|§=2x,2=xrx (1.3)
i=1
The general £,-norm of a vector x = [x1,x2,... ,xp]T € R" with p € [1,+00)

is defined as

n 1/p
[, = (le,-l”) (1.4)

i=1
The co-norm of a x = [x}, X2, ..., x,,]T € R" is defined as

¥|oo = max {|x;[} (L.5)

1.2 Convex Sets and Convex Functions

Definition 1.1 A set 2 is a convex set if for all x; and x, in £2 and A € [0, 1], we
have Ax; + (1 —A)xz € 2.

Geometrically, that means that given any two points x; and x; in £2, all points
on the line segment joining x; and x, are also in £2.

Definition 1.2 Suppose 2 C R” is a convex set and f(x) : 2 — R is a convex
function, if its epigraph (the set of points on or above the graph of the function) is a
convex set. Or equivalently, if for all x, y € £2 and A € [0, 1], we have

fAx+ (A =)y) <Afx)+ A -=1)f(y) (1.6)

A function f is a strictly convex function if strict inequality holds in (1.6),
whenever x # y and 0 < A < 1.
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Definition 1.3 Suppose £2 C R” is a convex set and g(x) : 2 — R is a concave
Sunction, if f(x) = —g(x) : £2 — R is a convex function. Or equivalently, if for all
x,y € 2 and A € [0, 1], we have

gAx +(1—-2A)y) = Aglx) + (1 —-2)g(y) 1.7
A function f is a strictly concave function if strict inequality holds in (1.7),

whenever x # yand0 < A < 1.

The basic inequality (1.6)—(1.7) is sometimes called Jensen’s inequality [5]. It
can be easily extended to convex combinations of more than two points.

Theorem 1.1 (Jensen’s Inequality) Suppose C C R" is a convex set, f(x) : C >
R is a convex function on its domain C, we have

SAuxy 4o+ Aexi) A f(x) + oo 4 Ap f(xk) (1.8)

forallxy,..., Xm€C, A >0and )] A =1, meN.

Proof Let us use mathematical induction to prove it. For the case k = 2, the
statement is true by definition.

Assume the statement is true for the case k > 2, and then for the case k + 1, we
have

SRaxy + Aoxy + -+ + Xk + Akt1Xk41)
A A
< _Ak+1)f( G+ A5 - oF A3

)+lk+1f(xk+1)

1 — Akt
)L
< (= h) | 7=y FO0 + o fO) 4o b g — S0
+ lk+1f(xk+1)
= A fx1) + A2 f(x2) + -+ + A1 f(Xie1)
So, the statement holds true for the case k +‘ I
By mathematical induction, the statement holds for any k € N\{1}. O

Corollary 1.1 Suppose C C R”" is a convex set, f(x) : C — R is a concave
function on its domain C, and we have

SAuxy 44 X)) = A f(x) + -+ A f (k) (1.9)

Jorallxy,...,xy € C, A > OandZ:';l/\,- =1,meN.
Based on Jensen’s inequality, we can easily obtain the useful Gibbs’ inequality.

Theorem 1.2 (Gibbs’ Inequality) Suppose that p = {p1,.... pn} is a discrete
probability distribution. Thus, we have Y ;_, p; = 1, p; > O0fori = 1,...,n. For
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another discrete probability distribution q = {q, ..., qn}, the following inequality
holds

n n
=Y pilnp; ==Y pilng (1.10)
i=l i=1
with equality if and only if
Pi=¢qi, Vi (1.11)

If p(x) is a probability distribution function for x on set §2 and q(x) is another
probability distribution function on $2, the following inequality holds

- [ p)mp@) — pe g dx <0 (112
with equality if and only if
px) =qx). Vx (1.13)
Proof We only prove the discretized version and the proof for continuous version is
similar.

Let A denote the set of all i for which p; is nonzero. Since In function is concave,
we have

_pr lnﬂ > —1In (Zp,-ﬂ) = —1In (Zq;) > —1In (Zq,-) =—Inl =0
ieA Pi iea Pi ieA i
(1.14)

So, we have

—> pilng; ==Y pilnp, (1.15)

i€A i€eA
and therefore
n n
= pilngi ==Y pilnp, (1.16)
i=1 i=1

since the right-hand side does not grow, and meanwhile the left-hand side may grow
or remain unchanged.
Trivially, we can find the equality holds only if p; = g;,fori = 1,...,n. O

Along with Gibbs’ inequality, we can define a widely used measure of distribu-
tion differences as below [6, 7].



1.3 Convex Optimization 5

Definition 1.4 The nonnegative quantity D (p(x) || ¢(x)) is called Kullback-
Leibler (K-L) divergence of q(x) from p(x). For discrete probability distributions
p(x) and g(x), the K-L divergence of g(x) from p(x) is defined to be

i

D (p(x) || ¢(x)) = Zp.-m[ﬂ (1.17)

For continuous probability distributions p(x) and g(x), the K-L divergence of ¢(x)
from p(x) is defined to be

D (p() || ¢(x)) =fp(x)1n[§f3]dx (1.18)

We will discuss an important application of Kullback-Leibler divergence in
Sect.3.4.
More applications of Jensen’s inequality can be found in [8].

1.3 Convex Optimization

1.3.1 Gradient Descent and Coordinate Descent

Let us consider a minimization problem without constraints
min f(x) (1.19)
X

where x € R” is the optimization variable and the function f : R” — R is the
objective function.

Suppose we start from a point x, € R”". If the function f(x) is defined and
differentiable in a neighborhood of x, then f(x) decreases fastest if we move in
the direction of the negative gradient of V f(x) at xo. When we move a small enough
distance, in other words, for a small enough yy > 0, we reach a new point x

x1 = x0— YV f(xo0) (1.20)
and it follows that
f(xo) = f(x1) (1.21)
Consider the sequence {xg, X1, ..., X} such that

Xi+1 =Xk — WV f(xk), v >0 (1.22)
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Fig. 1.1 An illustration of gradient descent algorithm

we have

f(xo) = fx1) = -+ fxi) = fOex41) = -+ (1.23)

and hopefully this sequence converges to the desired local minimum [9]; see Fig. 1.1
for an illustration.

We call such search algorithm as gradient descent algorithm. When the function
f(x) is convex, all local minima are meanwhile the global minima, and gradient
descent algorithm can converge to the global solution.

Another widely used search strategy is coordinate descent algorithm. It is based
on the fact that the minimization of a multivariate function can be achieved by
iteratively minimizing it along one direction at each time [10]. For the above
problem (1.17), we can iterate through each direction, one at a time, minimizing
the objective function with respect that coordinate direction as

k+1 _ . k+1 k+1 o ok k
x; = argrynelygvgf(x1 swias 9 30 Kigeya 5w s X ) (1.24)

This will generate a sequence {xo, X1, ..., Xk, ...} such that f(xg) > f(x;) >
-+« f(xg) > ---.If this multivariate function is a convex function, this sequence will
finally reach the global optimal solution; see Fig. 1.2 for an illustration.
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Fig. 1.2 An illustration of coordinate descent algorithm

1.3.2 Karush-Kuhn-Tucker (KKT) Conditions

However, when there are constraints for the optimization problems, we cannot move
in a direction that only depends on the gradient of objective function. Let us consider
the following minimization problem with constraints

min f(x) (1.25)

x

sit. gix) <0,i=1,..., m (1.26)
where the functions g; : R" — R,i = 1,...,m are the inequality constraint

functions. Suppose the domain of this problem is denoted by §2. A point x* is
called the optimal solution of the optimization problem, if its objective value is the
smallest among all vectors satisfying the constraints.

The Lagrangian function associated with the optimization problem (1.25)—(1.26)
is defined as

Lx,@) = f(x)+)_aigix) (127)

i=l1



8 1 Preliminary Knowledge

where @ = [ay,...,a,]" € R™T is called a dual variable or Lagrange multiplier
vector. The scalar «; is referred to as the Lagrange multiplier associated with the i th
constraint.

The Lagrange dual function is defined as the infimum of the Lagrangian function
with respect to &

g(@) = inf L(x,a) (1.28)
X€ER

Denote the optimal value of primal problem (1.25)-(1.26) by f*. It can be easily
shown that ¢ () < f*. This is called weak duality.
To get a lower bound of f*, we can turn to optimize the following Lagrange dual
optimization problem
max ¢ (a) (1.29)
o
sit. a;>0,i=1,....,m (1.30)
Moreover, we are interested in the so-called strong duality when the optimal
values of the primal and dual problems are equal. Karush-Kuhn-Tucker (KKT)

conditions are widely used to characterize the criteria under which strong duality
holds [11, 12].

Theorem 1.3 (KKT saddle point conditions) Consider the optimization prob-
lem (1.25)—(1.26) where f and g; are arbitrary functions. If a pair of variables
(x*,a™) exists for the Lagrange function (1.28), satisfying

L(x*,a) < L(x*,a*) < L(x,a™) (1.31)

forallx € 2 and @ € R"Y, x* must be an optimal solution to the optimization
problem (1.25)—(1.26).

Proof 1t is straightforward to prove that L(x*,a*) = f* = ¢* with ¢* being
the optimal value of the dual problem (1.28), and a* is the associated dual optimal
solution, because

max g(e¢) = max inf L(x,a)> inf L(x,a*)=L(x* a*) = f* (1.32)

a>0 a>0 x€ XER

Combining it with g (@) < /™, the optimal solution is found. O

Furthermore, for the optimal solution pair (x*,@*), we can derive from
Ineq. (1.31) that

afgi(x*)=0,i=1,....m (1.33)

which are usually called complementary slackness conditions.



