* | S E »I7 ¥ | @] =

SCOURSE u LANGURG i

hEBRESHAL A
FOREIGN LANGUAGE TEACHING AND RESEARCH PRESS




Discourse and Language Functions

BRI EE TR

Editors in Chief: HUANG Guowen (#[E 30)

(E%i) WANG Zongyan ( FE5Z%)
Deputy Editors in Chief: CHEN Yongpei (FRiKKz)
CEl 4D YANG Bingjun (M%)

LIN Zequan CHREEAS)
HUANG Jlayou ( =-=, .;__,~ ==

HEBF ST LM
FOREIGN LANGUAGE TEACHING AND RESEARCH PRESS



(R)FEF1555

Pl 5 LERR 4 H (CIP) b

IG5 S5 S Y6/ B E 3 R R E . — b AMEECEE 505 i, 2000
ISBN 7 - 5600 — 2668 — 0

[.i& 1. % I.WESEFEY—K. L V. H319.4

Hp [ A B 54 CTP $dlid% 52 (2002) 58 031418 5

ERSIEEHIINEE

4 wEX ERER

BERE: NHEEK

HARZIT: AMEHE S5 AL

: LRI =30 19 5 (100089)
. http: //www. fltrp. com

A AMNE R KA BRI

. 787% 1092 1/16

A S

: 2002 4E 6 ASE 1AR 2004 4E 2 H 5 2 REDR
- ISBN 7 - 5600 — 2668 — 0/H- 1383
: 18.90 ot

ST EIRR 2 LT R R T T TR
PRI BEIRA SR (010)68917826
TR A S 2R LIS : (010)68917519

Gl HEFIHIZF R
S d S EMNEEE



Foreword

The papers in this volume were selected from a total of 86 presented at the International
Conference on Discourse and Language Functions organised by the School of Foreign Languages,
Zhongshan (Sun Yat-sen) University (Guangzhou), from the 10" to the 13™ of August 1999. This
was the first conference on linguistics ever hosted by the School and a major event in our academic
history. By the time when the conference was held, Zhongshan University was already one of the
most important universities in China focusing on systemic functional linguistics both in teaching and
research. The purposes of the conference were to promote academic exchange between scholars at
home and abroad, to strengthen our ties with the outside world, to familiarize our friends with the
developments of the School, to make the recent happenings and up-to-date information in the field
accessible to our teachers and students and to provide a forum for language researchers as well as
practitioners on issues related to discourse and language functions.

The conference’s 102 participants came from more than 40 universities and colleges in America,
Australia, Britain, Canada, Hong Kong, Macau and other Chinese cities. At the conference seven
distinguished linguists were invited to be plenary speakers (in alphabetical order): Robin FAWCETT
(Cardiff), Peter FRIES (Central Michigan), M. A. K. HALLIDAY (Sydney), Ruqaiya HASAN
(Macquarie), HU Zhuanglin (Peking), Christian MATTHIESSEN (Macquarie), and WANG Zongyan
(Zhongshan). Glad to have so many non-Chinese linguists here, the Program Committee made
very good use of the opportunity by asking them to lead the “Special Interest Group” discussions (in
their respective research areas) and to join in the Panel Discussion, apart from giving plenary
speeches.

The conference’s success depended on the efforts of both the participants and the organisers; on
behalf of the Organising Committee, we would like to express our gratitude to all those who helped
us.

Many people have helped in bringing this book about, and we would like to take this
opportunity to thank them. First and foremost are the contributors to the volume, especially
HALLIDAY, FRIES, and MATTHIESSEN. The Lingnan Foundation gave us very generous
financial support, which made it possible to invite plenary speakers from different parts of the world
and to publish the book; such help is warmly appreciated. We would also like to thank the plenary
speakers and the participants who played active roles at the Conference. The Guangzhou English
Language Centre and the Chinese Language Centre of Zhongshan University gave the Conference
financial support. Many people have helped us by reviewing the papers. Last but not least, we
would like to thank the Organising Committee of the Conference. Those whose work and support
which made the Conference a great success are gratefully remembered and warmly appreciated.

Huang Guowen
Wang Zongyan

iii



Contents

Foreword

Huang Guowen and Wang Zongyan il

1  Introduction to Halliday’s “Computing Meanings: Some Reflections on Past Experience
and Present Prospects”
Christian M. 1. M. Matthiessen 1

o

Computing Meanings: Some Reflections on Past Experience and Present Prospects
M. A. K. Halliday 3

3 The Role of Process and Nominalization in Grammatical Metaphor
Hu Zhuanglin 26

4  Cleft Sentences as Grammatical Metaphors
Huang Guowen 34

5 A Functional Interpretation of Causation
Yang Xinzhang 42

6  Indeterminacy in the Functional Analysis of Nonfinite Clauses
Yang Bingjun 50

7  Theme and New in Written Advertising
Peter H. Fries 56

8  Textuality of Organisation of Modal Options in Text
Peng Xuanwei 73

9  Theme in English and Chinese: A Contrastive Study
Chen Zhi’an and Kuang Lan 81

10 Lexicogrammar in Discourse Development: Logogenetic Patterns of Wording
Christian M. I. M. Matthiessen 91

11 A Systemic-Functional Approach to Research Paper Abstracts
Yu Hui 128

12 Who Is to Blame: On Mood, Speech Function, and Interpersonal Relationship
Fan Wenfang 138



13

14

15

16

17

18

Language Form, Discourse Structure and Language Function——A Brief Survey of
the Plain Language Processing in Prospectuses

Shang Yuanyuan 146

The Information Unit in a Phonological Perspective
Chen Yongpei 155

Illocutionary and Perlocutionary Acts of the Whorfian Hypothesis
Gao Yihong 164

Different Cultures, Different Speech Act Sets Speech Act Theory and Its Implication
to Intercultural Communication Studies

Chen Jianping 175

Features of Argumentation in Chinese and English Texts
Helena Y. K. Wong 185

Display Advertisements and Register Variation
Doreen Dongying Wu 202

Appendix: M.A K. Halliday: Computing Meanings: Some Reflections on

Past Experience and Present Prospects (in Japanese) 213

ii



Introduction to Halliday’s “Computing Meanings:
Some Reflections on Past Experience and Present Prospects”

Christian M. I. M. Matthiessen

Macquarie University, Australia

Professor M. A. K. Halliday was invited to give a plenary speech to PACLING 95, held in April
1995 in Brisbane. The result was “Computing meanings: some reflections on past experience and
present prospects”.

In this article, Professor Halliday reviews the changing relationship between language and
computing in the field that has come to be known as “computational linguistics” or “natural
language processing”. When Halliday first became involved in this area as a linguist taking part in
a machine translation project directed by Margaret Masterman in Cambridge in the mid 1950s,
computing language meant computing words; but over the decades, he suggests, computing language
has moved closer to the central property of language — meaning. Thus in the 1960s researchers
began to try to compute grammatical structures — the patterns by which meaning is realized by
wording in the lexicogrammar of a language (although this natural relationship between grammar
and meaning was obscured by the formal theories of syntax at the time). This led to the
development of grammatical parsers such as Augmented Transition Network parsers and this work
continued in the 1970s. During this period the task of computing meaning began to be explored:
researchers started to develop semantic interpreters to work with the output from grammatical
parsers and systems for representing meaning (logic-based systems and network-based systems, the
two gradually being integrated in the hybrid systems of the 1980s onwards). In the 1980s,
meaning-based computational linguistics continued to develop. The challenge of representing
meaning was better understood and more principled modes of representation were developed. In
addition, semantic phenomena extending beyond the domain of grammatical units such as the clause
were increasingly taken into account; for example, reference chains and rhetorical relations were
modelled in Natural Language Processing (NLP) systems. Moreover, text generation was added to
the computational linguistic research agenda, which meant that meaning had to be taken as the point
of departure. This was further underlined by the attention given to systems capable of dialogue and,
particularly in the 1990s, by the development of multilingual and multimodal generation systems.
Another important feature of NLP in the 1990s has been the development of techniques for linking
various NLP tasks to information drawn from corpora. This work is based on what Halliday calls
the cline of instantiation.

Halliday’s own general theory of language, systemic functional theory, and descriptions of
Chinese and English have played an important role in certain areas of computational linguistics /
natural language processing. The earliest well-known example of an NLP system building on

systemic functional theory is Winograd’s celebrated SHRDLU system from the beginning of the
: 1



1970s. This was followed, later in the 1970s, by one of the pioneering text generation systems,
Davey’s Proteus system, which was capable of describing games of noughts and crosses. Starting
around 1980, systemic functional theory began to be used more widely as a resource of various text
generation systems — not only the first of these systems, the Penman system, but also a number of
other important contributions such as Terry Patten’s SLANG system, Robin Fawcett & Gordon
Tucker’'s COMMUNAL system and the system developed at Kyoto University by John Bateman.
Some of these efforts have continued throughout the 1990s; and John Bateman has gone on to
develop a general systemic functional generator core, the KPML system, which is available together
with a user-friendly workbench. We have carried out systemic functional NLP research in Sydney
since 1990, building on the Penman tradition (this has included the development of multilingual and
multimodal text generation by Zeng Licheng and others in our group and of computational tools for
linguistic research by Wu Canzhong and others in our group). During this period other tasks were
added to the research agenda based on Halliday’s systemic functional theory, including explorations
in parsing by Robert Kasper and Mick O’Donnell and multilingual research by Erich Steiner and
Elke Teich.

The research mentioned above can be characterised as “systemic functional computational
linguistics” because it is based entirely on systemic functional theory at the level of theoretical
design. However, there is also a very significant flow of ideas from Halliday within another area of
computational linguistics. Halliday’s work was central to Martin Kay’s conception of his
functional unification grammar (Kay, p.c.); and this in turn influenced Robert Kaplan in his and Joan
Bresnan’s development of Lexical Functional Grammar (LFG) (stated by Joan Bresnan in a talk at
AILA 1999, Waseda University, Tokyo). This suggests that researchers working within LFG —
and also within Head-driven Phrase Structure Grammar (HPSG) — would have a great deal to gain
by drawing on Halliday’s work in particular and systemic functional theory in general.

In my view, future generations will look back on 20th century linguistics and see Halliday as
one of a handful of truly outstanding scholars laying the foundations for research focusing on
language in the 21st century. Computational linguistics in the 20th century drew mostly on work
from formal linguistics. This is easy to understand. Formal accounts of language are much easier
to take into the computational realm than functional ones. Halliday’s work may be significantly
harder to take on board in computational modelling; but it can certainly be done, as has been
demonstrated successfully for Halliday’s theory of lexicogrammar, and the benefits in future will be
much more far-reaching because unlike formal linguists Halliday gives us a comprehensive picture
of language in context and, again unlike most formal linguists, he has made the key property of
language — the ability to make meaning — central to his theory of language. In fact, Halliday’s
account also explains why modelling language is such a challenging task: the reason is that it is a
fourth-order system — a semiotic or meaning-making system, the most complex kind of system in
the hierarchy of systems that he presents in his article. To manage this complexity, we can use the
kind of map of language that Halliday sketches in “Computing meanings”. This constitutes a
holistic approach to language in context based on systems-thinking and provides us with an
alternative to the componential approach based on Cartesian Analysis that has dominated formal
linguistics and a great deal of computational linguistics.



Computing Meanings:

Some Reflections on Past Experience and Present Prospects

M. A. K. Halliday
University of Sydney, Australia

The present paper came into being in a specific academic context. Professor Michio Sugeno, of the Tokyo
Institute of Technology, well known for his leadership in fuzzy computing, had become convinced that if computers
were going to advance any further towards human-like intelligence they would have to operate in a more human-like
manner — which meant, with natural language. He was aware of the experience that had been gained in using
systemic functional grammar in natural language processing; particularly the PENMAN text generation project
started in 1980 at the Information Sciences Institute of the University of Southern California. In that project,
directed by William Mann, Christian Matthiessen had been the principal linguist, and I had been retained from time
to time as a consultant.

Professor Sugeno began a regular dialogue with Christian Matthiessen, and he and two of his younger
colleagues attended a series of seminars on systemic theory which I gave while teaching in Japan in 1992.
Matthiessen and I visited his laboratory; and prepared some comments about the linguistic implications of his work
and about the nature of language as a “fuzzy” system. Sugeno was a member of the Organizing Committee of the
International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second
International Fuzzy Engineering Symposium (FUZZ-IEEE/IFES’95) held in Yokohama on 20-24 March 1995, and
Matthiessen and I were invited to participate. I offered a plenary paper, submitted in written form as “Fuzzy
grammatics: a systemic functional approach to fuzziness in natural language”, which appeared in the Proceedings of
the conference; and gave a spoken presentation entitled “On language in relation to fuzzy logic and intelligent
computing”.

About a month later, the 2nd Conference of the Pacific Association for Computational Linguistics (PACLING
95) was held in Brisbane, and I was asked by the organisers to present a paper. Sugeno had begun to refer to his
concept of intelligent computing as “computing with words”; and this seemed a clear formulation of his commitment
to natural language. But I felt that “computing with words” was liable to be misinterpreted, and on two counts: that
if you were computing with language at the lexicogrammatical level it would be with clauses and sentences rather
than with words; but that in any case the relevant interfacing with language would be with the semantics rather than
the lexicogrammar. If intelligent computing was computing based on natural language, it would be computing with
meanings, not computing with wordings. But, at the same time, it had to be made clear that meanings are just as
much phenomena of language as wordings are. Thus I was not wanting to deflect Sugeno’s project, but only to
interpret it in a way that seemed to me more real, and more accurate as an account of how human beings go about
their tasks.

This was the genesis of the present paper. In it I tried to put the issue into a historical context, and also to

3



make explicit, with the help of illustrations, what the notion of computing meanings would imply in relation to a
stratified, metafunctional model of language. The paper was prepared for oral presentation and I have retained it in

its original state.

It is the privilege of an old person to be allowed to look back in time — even perhaps in a
context such as this, when addressing specialists in computing. Computing is, after all, one of the
most future-oriented of all present-day human activities! But it happens to be just forty years since I
had my first encounter with computational linguistics. This was in an early project in machine
translation, which was the main purpose that was envisaged for linguistic computing at the time. I
was Assistant Lecturer in Chinese at Cambridge; and I was delighted at being asked to be a member
of the Cambridge Language Research Unit, along with Margaret Masterman, who directed it, R. H.
Richens, plant geneticist, and A. F. Parker-Rhodes, whose extensive interests ranged from botany to
mathematical statistics. That was a fairly brief excursion, since I left Cambridge shortly afterwards;
but since then I have had further encounters from time to time, as the field of linguistic computing
has developed and expanded to its present high-energy state. Of these the most notable, for me,
were the times I spent working with Sydney Lamb, first at Berkeley then at Yale, in the 1960s, and
then later, in the 1980s, working with William Mann and his group at the Information Sciences
Institute of the University of Southern California.

Looking back over this period, I seem to see a change of direction taking place roughly every
fifteen years. The first turning point, of course, was the idea of computing with language at all; we
can date this in round figures from 1950, when the idea of using a computer to translate from one
language to another began to be taken seriously. The approach was essentially mathematical, in
that machine translation was seen as a problem to be solved by applying to language the same
logical methods that had gone into the design of the computer itself. There was, at least among
mainstream researchers, no serious concern with language as a distinct type of phenomenon, one
which might need to be investigated theoretically in terms of its own systemic traits.

Then in and around the mid-sixties a significant transformation took place. Language came
more sharply into focus; it began to be treated as a phenomenon sui generis, with linguistics
replacing logic as the theoretical point of departure from which to engage with it. In Russia, and
perhaps in Japan, this transformation was fairly gradual; but in North America and western Europe it
was more catastrophic, because 1965 was the year in which the U.S. Air Force officially pronounced
machine translation a failure and withdrew the funding from the major translation projects.
American researchers who continued computing with language carried on their activities under other
headings; taking over “artificial intelligence” as a unifying concept, they addressed some more
specific computational tasks that were not tied directly to translating, such as parsing, abstracting,
question-answering or expert systems and the like. Terry Winograd’s major contribution
Understanding Natural Language belongs to this time; so does the earliest work in computing our
own system networks (forming paradigms, implementing realisations and so on) which was done by
Alick Henrici at University College London (see Winograd 1972; Henrici 1966 [Halliday & Martin
1981]).

The third turning point came around 1980, when a new generation of computers made it
possible to build systems that approached somewhat closer to the complexity of natural language.

4



Computational linguists now had at their disposal the necessary speed, memory and processing
power that made parsing and generating look like more realistic goals. Before that time,
computational grammars had remained fairly simple: limited to “toy” domains, syntactically
constrained, and accommodating only rather gross distinctions in meaning; whereas one could now
begin to conceive of “writing the grammar of a natural language in computable form”, with account
taken of considerations from linguistic theory. For linguists this meant that the computer now
became, for the first time, a tool for linguistic research, a means of finding out new things about
language: it made it possible on the one hand to test grammatical descriptions (which were becoming
too complex to be tested manually) and on the other hand to build a large-scale corpus — not only to
assemble and manage it but to access it and interrogate it from many different angles. Two very
large systemic grammars of English for text generation were developed during this period: the
Penman “Nigel” grammar built up by Christian Matthiessen under William Mann's direction at 1.S.L.,
and the “Communal” grammar compiled by Robin Fawcett at the University of Wales (Matthiessen
& Bateman 1992; Fawcett et al 1993).

Fifteen years from 1980 brings us up to 1995; so are we now moving through another turning
point? I suspect we may be, in that the status of language — that is, its general relationship to
computing — is once again undergoing a major shift. It seems that language is being relocated at
the very centre of the computing process itself. In order to explore this further, I would like to refer
explicitly to the notion of “computing meanings” that I used in the title of my talk. But first let me
say what I do not mean. I am not referring here to the rather overworked concept of the
“information society”. It is no doubt true, as we have been being told for the past two decades, that
the exchange of goods-&-services is rapidly being overtaken by the exchange of information as the
dominant mode of socio-economic activity; and this is certainly relevant, since information is
prototypically made of language. But it is relevant as the context of the change I am referring to; it
is not the nature of the change itself. What I have in mind is what Professor Sugeno calls
“intelligent computing”, which he defines as computing that is based on natural language. In
Sugeno’s view, if we want to move forward to the point where the computer becomes truly
intelligent, we have to make it function, as people do, through the medium of language. And this
critically alters the relationship of language to computing.

Let me then briefly return to the past, and use the concept of “computing meanings” to track the
shifting relationship between the two. In the 1950s, there was no direct engagement between them
at all; it was taken for granted that translating meant selecting from lists of possible formal
equivalents —that it was an engineering job, in other words. The prevailing metaphor was that of a
code: as Warren Weaver conceived of it, a Russian text was simply an English text with different
coding conventions. There was no conception of language as the systemic resources that lay
behind a text hence no need to construct any kind of theoretical model of language. This is not to
imply that nothing of value was achieved; on the contrary, there was a great deal of essential
analytical work, especially in lexis and morphology: see for example Delavenay’s (1960)
Introduction to Machine Translation. But meaning was taken as given, rather than problematized;
this was not yet “computing with meanings”.

In the second phase, language emerged as a computable object, needing to be modelled in its
own right the concept of “a grammar”, a description of a language as written by a linguist, came to

5



be accepted — or at least tolerated as a necessary nuisance. But such a descriptive grammar had no
direct place in the computing process; the computational grammar was purely procedural, a program
for parsing strings of words. (There was little text generation during this phase; one of the few
such projects was the systemic generator developed in Edinburgh by Anthony Davey (1978).) On
the other hand, as implied by the label “computational linguistics” which came into favour during
this period, these were computing operations performed on language; the way the strings of words
were manipulated was designed to establish what they meant. There had clearly been a move in the
direction of computing with meanings.

It was in the third phase, after about 1980, that developments took place which the phrase
“computing with meanings” could more accurately describe. By this time computational grammars
came to take the form of descriptive, or “declarative”, representations, and researchers sought to
develop generalized forms of representation suited to their computational needs. It was accepted
that these had to accommodate large-scale grammars with reasonable detail and complexity, not just
the dedicated and simplified grammars of the earlier phase. The move from procedural to
declarative, and the shift in scale and in depth of focus, changed the relationship once again: the
value of a piece of wording was, for the first time, being interpreted in terms of agnation, its locus in
the total meaning potential of the language. It would seem accurate now to characterise
computational linguistic operations as operations on meaning.

Perhaps I could gloss this with a story from personal experience. Back in the 1960s, the
working assumption was, “If we can't compute your grammar, your grammar must be wrong”.
This was not, let me make it clear, arrogance on the part of individual computer specialists; simply a
conviction that the computer defined the parameters of human understanding. To me it seemed that
the constraints set by current technology, and even more those set by current theories of logic, at that
particular moment in human history, were quite irrelevant for evaluating models of grammar; this
was the main reason why I moved away from the scene, for the second and (as I thought) the final
time. So when in 1980 William Mann came to see me — I was working at U. C. Irvine — and
asked me to write a systemic grammar of English for his forthcoming text generation project (the
“Penman” I mentioned earlier), I challenged him on this point: how much would I have to “simplify”
(that is, distort) the grammar in order to make it computable? Bill Mann's answer was, “If I can't
compute your grammar, I'll have to learn how”. He later added an interesting comment: “I don't
always understand why linguists describe things the way they do; but I've come to realise they
always have a reason”. It was clear then that the relationship of language to computing had moved
on.

There is a serious point underlying this little anecdote. Of course we, as grammarians, had to
learn to write our descriptions in computable form: that is, to make them fully explicit. This was an
important exercise, from which we learnt a great deal. But to make them explicit is not the same
demand as to make them simple. Language is not simple; it is ferociously complex— perhaps the
single most complex phenomenon in nature; and at least some of that complexity had to be
accounted for. To take just one example: what was referred to under the general label
“constituency” is not a single, undifferentiated type of structure (like a “tree”), but a highly variable
array of different meaning-making resources, with highly complex interrelations among them.
Unfortunately the linguists themselves had made the problem worse: the prevailing ideology, at least

6



in America, but also perhaps in western Europe and in Japan, was the structuralist one deriving out
of Bloomfield via Chomsky; and this was highly reductionist, in that, in order for natural language to
be represented as a formal system, much of the rich variation in meaning had to be idealized out of
the picture. But not only was it reductionist — it was also authoritarian: for linguists of this
persuasion, the standard response to anyone who disagreed with them was, “Either your grammar is
a notational variant of my grammar, or else your grammar is wrong”. So computer scientists who
ventured across the frontier into linguistics, in that second phase, might reasonably conclude that a
natural language could be modelled as a well-formed system conforming to a recognizable
mathematical-type logic. This period in mainstream linguistics was an age of syntax, in which a
grammar could be reduced to an inventory of well-defined structural forms.

But by the time of what I am calling the third phase, the orientation of linguistics had changed.
Much more attention was now being paid to semantics, both by linguists working from within the
Chomskyan paradigm and by those who had remained outside it. ~Thus the concept of
“computational linguistics” already implied something closer to “computing meanings™; it implied a
system that fully engaged with natural language, parsing and generating text in operational contexts.
Machine translation once again figured prominently on the agenda, as the four components of a
speech-to-speech translation programme fell into place: recognition + parsing + generation +
synthesis were all seen to be possible, and such systems now began to appear on the market — not
perhaps doing all that was claimed for them, but performing adequately for a limited range of tasks.
The general encompassing term was now “natural language processing”.

But these continue to appear as two distinct activities: computing, and language processing.
There is still the awkward disjunction between computing in general, and meaning. Computational
linguistics, or natural language processing, or generation and parsing, are separate operations from
computing in the general sense. And this has some strange consequences. I recently visited Japan,
to attend the international conference on fuzzy systems chaired by Professor Sugeno. There were
many interesting exhibits, from industry and also from LIFE, the Laboratory for International Fuzzy
Engineering, which was just coming to the end of its own life cycle. One of the latter was FLINS,
the Fuzzy Natural Language Communication System; this was a question-answering system
incorporating an inference engine, which reasoned by taking the special case, assigning it to a
general class and inferring a course of action there-from. One very interesting feature of this
system was the use of traditional proverbs to state the general proposition — this being precisely the
function that proverbs had in our traditional societies (my grandmother had a proverb for every
occasion). But what struck me particularly was that their inferencing procedures, which involved
both symbolic and fuzzy matching, were totally insulated from their language processing; they had
simply bought ready made commercial systems for parsing and generating text. In other words,
reasoning and inferencing were being treated as non-linguistic operations — although they are being
entirely carried out through the medium of language. Notice what this implies: that there is no
semantic relationship — no systematic relationship in meaning — between, say, the proverbial
expression more haste less speed and (the verbal component of) an instance to which it relates as a
general proposition, for example Don't be in a hurry to overtake; it only slows you down. More
haste less speed

This seems to be a scenario in which linguistics and computing inhabit two different worlds.

7



Natural language is being seen as something to be separately processed, rather than as an inherent
part of the computing process itself. And this is the difference, it seems to me, between the third
phase and the subsequent, fourth phase which we may now be entering. With “intelligent
computing”, the boundary between computing in general and natural language processing rather
disappears: all computing could involve operating with natural language. Computing then becomes
synonymous with computing meanings.

“Intelligent computing” is an important concept which could have very far-reaching
consequences; so I would like to consider it here in a little more detail. As I mentioned earlier,
Sugeno defines this as computing based on natural language; he also sometimes expresses it in
simplified terms as “computing with words”. Lotfi Zadeh, the founder of “fuzzy logic”, used this
same formulation in his talk at the conference, remarking that computing with words “enhances the
ability of machines to mimic the human mind, and points to a flaw in the foundations of science and
engineering”. He also observed that, while human reasoning is “overwhelmingly expressed
through the medium of words”, people are only taught to compute with numbers — they are never
taught how to compute with words. Commenting on the formulation “computing with words”,
Zadeh glossed “computing” as “computing and reasoning”, and “words” as “strings of words, not
very small”.

We need to reformulate that last expression, in two steps as follows:

(1) for words (or strings of words), read wordings: words in grammatical structures, i.e. lexicogrammatical

strings of any extent;

(2) for wordings, in turn, read meanings, again in the technical sense; that is, semantic sequences of any given

extent.

Note that, in reformulating in this way, we are not questioning Sugeno’s concept; we are
recasting it in terms of semiotic practice. People reason and infer with meanings, not with
wordings (they don't store wordings, as is easily demonstrated when they repeat the steps along the
way). To put this in more technical terms: reasoning and inferencing are semantic operations.
Thus, if they are performed computationally, this will be done on semantic representations. But, at
the same time, such semantic representations are related systemically to the lexicogrammatical ones.
In other words, the meanings are construed in wordings. When people reason through talk, they
are actually reasoning with meanings; but these meanings are not a separate “cognitive” universe of
concepts or ideas — they are patterns of semantic (that is, linguistic) organisation brought about, or
“realized”, by the wordings. They are reasoning in language, even though not, strictly speaking, in
words.

There are in fact two noticeable disjunctions needing to be overcome, in the move into the
intelligent computing phase. One is this one between language and knowledge, or rather between
meaning and knowing, or meaning and thinking. Natural language processing systems typically
operate with one kind of representation for language, a “grammar”, and another, very different kind
of representation for knowledge — a separate “knowledge base”; and the two different
representations have then to be made to interact [Figure 1]. If we reconceptualize the knowledge
base as a meaning base — as another level in the representation of language — the problem
becomes more easily manageable: instead of two systems, one inside language and one outside (the
grammatical and the conceptual), there is only one system, language, with two levels of

8



representation, the grammatical (lexicogrammatical) and the semantic [Figure 2] (cf. Halliday &
Matthiessen 1999).

[cognitive] knowledge : base
[linguistic] grammar discourse
[linguistic] [pragmatic]
Figure 1: The cognitive model
[semantic] semantic system semantic instance
(text as meaning)
(linguistic)
[sexicogrammatical] grammatical system grammatical instance
(text as wording)

[system (potential)] [text (instantial)]
Figure 2: The semantic model

The second disjunction I have in mind is that between the instance and the system of which it
is an instance. The grammar of a natural language is represented systematically: conventionally as
a set of structures, or, in a systemic grammar, as a network of options — language as semiotic
potential. On the other hand, reasoning and inferencing are operations performed on
(representations of) instances. Now, any instance is meaningful only by virtue of its place in, and
its derivation from, the total systemic potential. But in computational reasoning and inferencing,
the instances are typically presented as unrelated to the overall system of the language. They are
handled as “discourse”, with the implication that discourse is process, without any system behind it.
If we reconceptualize discourse as “text”—as the instantiation of an underlying system — the
problem of reasoning and inferencing may also become more easily manageable [Figures 1 & 2].

Each of these disjunctions corresponds to a major duality in western thinking, enshrined in
contemporary philosophy and philosophical linguistics. The first is the duality between language
and mind, which is institutionalized in today's dichotomy between linguistics and cognitive science;
the second is the duality of langue and parole, which in turn is institutionalized in today’s dichotomy
between linguistics and pragmatics (See Ellis 1993, esp. chapter 5, and Matthiessen 1993, for
relevant discussions.). These dualities are taken over into our intellectual pursuits — such as
computational linguistics — without being problematized or even brought to conscious attention.
But there are alternative strategies available, as I have remarked. Instead of two systems, one
inside language (the grammatical) and one outside language (the conceptual, or cognitive), it is
possible to operate with one system, language, having two related levels of representation, the
(lexico)grammatical and the semantic; and instead of two classes of phenomena, one of language

g



(grammar) and one of parole (discourse), it is possible to operate with one phenomenon, language,
having two degrees or phases of instantiation, that of system and that of text. The “knowledge
base” becomes a “meaning base”, which can then be described in a framework that is homologous to
the grammar; and each instance of wording or meaning can be described by reference to the overall

potential of the system.
In this way the boundaries are redrawn as boundaries within language itself. The frontier between

language and cognition becomes a stratal boundary between grammar and semantics, or wordings
and meanings; while the frontier between langue and parole becomes an instantial boundary
between the system (of grammar or semantics) and the instance (of wording or meaning). I shall
suggest below that the two dimensions of stratification and instantiation can be used to define a
matrix for locating computational linguistic representations (See Figure 7). Meanwhile, a
consequence of redrawing these frontiers as boundaries internal to language is that both of them
become indeterminate, or “fuzzy”. Since they are theoretical constructs for explaining, and
managing, what is now being conceived of as a single unified semiotic system, namely language,
this is not really surprising. But they are fuzzy in different ways.

Instantiation is a cline, modelling the shift in the standpoint of the observer: what we call the
“system” is language seen from a distance, as semiotic potential, while what we call “text” is
language seen from close up, as instances derived from that potential. In other words, there is only
one phenomenon here, not two; langue and parole are simply different observational positions. But
we can also position ourselves at an intermediate point along this cline, moving in from one end or
from the other. I think that the critical intermediate concept, for our purposes, is that of register,
which enables us to model contextual variation in language. Seen from the instantial end of the
cline, a register appears as a cluster of similar texts, a text type; whereas seen from the systemic end,
a register appears as a sub-system. Computationally it is possible to exploit these two
complementary perspectives [Figure 3].

instantiation:
S
E = /,‘i A\
! sub-system A
1 S s i
] i ]
: - :
system ! [register] ! instance

i |
i = i
i ot - 1nstance type i

V v7 < :

Figure 3: Instantiation

Stratification is a relationship of a different kind. The boundary between semantics and
grammar is a true boundary; these are two distinct levels, or, strata, within the content plane of
natural language, and they have different realms of agnation — that is, the organisation of
grammatical space differs from the organisation of semantic space. But we can draw this boundary
at different places, shifting it “up or down” according to the task in hand. Furthermore, having
defined the relationship between semantics and grammar in this way, we are then able to extend the

10



same concept (known as realisation) so as to model the relationship of language to the context of
situation, interpreting the context also as a semiotic system [Figure 4]. Thus by deconstructing the
two dualities and overcoming the disjunctions they set up, we gain additional freedom of movement
on both the dimensions involved.

stratification:

context [culture—situations]

semantics [semantic system—meanings]

lexicogrammar [grammatical system—wordings]

Figure 4: Stratification

How is this relevant to the issue of “intelligent computing”? This concept, as defined by
Sugeno and by Zadeh, involves using natural language as the language of the computer; natural
language as the computational metalanguage. But this inevitably raises questions of representation.
It is sometimes forgotten that the orthographic system of every (written) language already involves a
large number of highly complex decisions about meaning — what meanings are to be distinguished,
how they are to be interrelated, and so on; to take a very clear example, in the English writing
system, if a semantic contrast is realized by the order of elements it will be registered in writing (you
can go | can you go), whereas if it is realized by intonation or rhythm it is not (thus you can go
represents a wide range of different kinds and degrees of emphasis, different modalities and so on).
Since these decisions were taken a long time ago, without conscious reflection, we tend simply to
forget about them; but the differences in meaning that are obscured in this way could be critical to
the computational process. Even if we have a speech recognition system which can accept spoken
input, however, this does not eliminate the problem. Using natural language as metalanguage does
not mean plucking isolated instances out of the air, as can be done with simple command control or
question-answering systems. It means locating each instance within a defined realm of meaning
potential, from which it derives its value in the given computational context — in other words,
relating the instance to the system, or to some specified register or sub-system; and this requires
engaging with the language in theoretical terms. We cannot just take language for granted as
something we know all about in terms of common sense (which usually means, in practice, in terms
of how our teachers used to talk about language in primary school). Intelligent computing will
make stringent demands on the full range of complexity of natural languages; otherwise they would
be of little use for the purpose. Therefore, it will require theoretical tools for describing and
managing that complexity.

In other words, it will require what I have been calling a grammatics: a model of language
which uses grammar as its underlying logic. Let me recall here Zadeh's reference to the “flaw in
the foundations of science and engineering”, and ask what Zadeh meant by this remark. The flaw,
as Zadeh saw it, was that mathematics ruled, and that events were “quantized rather than granular’:

11



