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Introduction

The last thing one discovers in writing a book is what to put first.
Blaise Pascal

In this Introduction we provide an intuitive background to the material that we present
more formally later on. Terms that appear here in bold-face type are to be thought of
as descriptions rather than as definitions; having met them here in an informal setting,
you should find them more familiar when you meet them later. So read this Introduc-
tion quickly, and then forget all about it!

What is a graph?
We begin by considering Figs 0.1 and 0.2, which depict part of a road map and part
of an electrical network.

P Q P Q

T S T S

Figure 0.1 Figure 0.2

Either of these situations can be represented diagrammatically by means of points
and lines, as in Fig. 0.3. The points P, Q, R, § and T are called vertices, the lines are
called edges, and the whole diagram is called a graph. Note that the intersection of
the lines PS and QT is not a vertex, since it does not correspond to a crossroads or
to the meeting of two wires. The degree of a vertex is the number of edges with that
vertex as an end-point; it corresponds in Fig. 0.1 to the number of roads at an inter-
section. For example, the degree of the vertex P is 3 and the degree of the vertex Q is 4.

P Q

Figure 0.3
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The graph in Fig. 0.3 can also represent other situations. For example, if P, O, R,
S and T represent football teams, then the existence of an edge might correspond to
the playing of a game between the teams at its end-points. Thus, in Fig. 0.3, team P
has played against teams Q, S and 7, but not against team R. In this representation,
the degree of a vertex is the number of games played by that team.

Another way of depicting these situations is to use the graph in Fig. 0.4. Here we
have removed the ‘crossing’ of the lines PS and QT by redrawing the line PS outside
the rectangle POST. The resulting graph still tells us whether there is a direct road
from one intersection to another, how the electrical network is wired up, and which
football teams have played which. The only information we have lost concerns
‘metrical’ properties, such as the length of a road and the straightness of a wire.

Thus, a graph is a representation of a set of points and of how they are joined up,
and any metrical properties are irrelevant. From this point of view, any graphs that
represent the same situation, such as those of Figs 0.3 and 0.4, are regarded as the
same graph.

P Q

Figure 0.4

More generally, two graphs are the same if two vertices are joined by an edge in
one graph if and only if the corresponding vertices are joined by an edge in the other.
Another graph that is the same as those in Figs 0.3 and 0.4 is shown in Fig. 0.5. Here
all idea of space and distance has gone, but we can still tell at a glance which points
are joined by a road or a wire.

Q

Figure 0.5

In this graph there is at most one edge joining each pair of vertices. Suppose now
that in Fig. 0.5 the roads joining Q and S, and S and T, have too much traffic to carry.
Then we can ease the situation by building extra roads joining these points, and the
resulting diagram looks like Fig. 0.6. The edges joining Q and S, or S and 7, are called
multiple edges. If, in addition, we need a car park at P, then we indicate this by
drawing an edge from P to itself, called a loop (see Fig. 0.7). In this book, graphs may
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Q Q
P
S S

Figure 0.6 Figure 0.7

contain loops and multiple edges; graphs with no loops or multiple edges, such as the
graph in Fig. 0.5, are called simple graphs.

The study of directed graphs (or digraphs, as we abbreviate them) arises from
making the roads into one-way streets. An example of a digraph is given in Fig. 0.8,
with the directions of the one-way streets indicated by arrows; such a ‘directed edge’
is called an are. (In this example, there would be chaos at T, but that does not stop us
from studying such situations!)

Figure 0.8

Much of graph theory is devoted to ‘walks’ of various kinds. A walk is a ‘way of
getting from one vertex to another’ in a graph or digraph, and consists of a sequence
of edges or arcs, one following after another. For example, in Fig. 0.5, P - Q — R
is a walk of length 2, and P > S -5 Q - T — S — R is a walk of length 5. A walk
in which no vertex appears more than once is called a path; for example, P - 7 —
S — R is a path. A walk of the form Q = S — T — Q, in which no vertex appears
more than once, except for the beginning and end vertices which coincide, is called
a cycle.

In Chapter 2 we also consider walks with some extra property. In particular, we
discuss graphs and digraphs containing walks that include every edge exactly once
and end back at the initial vertex; such graphs and digraphs are called Eulerian. The
graph in Fig. 0.5 is not Eulerian, since any walk that includes each edge exactly once
(suchasP > Q>R —>S5S—->T—>P—>S5— Q- T)must end at a vertex different
from the initial one. We also discuss graphs and digraphs containing cycles that pass
through every vertex; these are called Hamiltonian. For example, the graph in
Fig. 0.5 is Hamiltonian; a suitable cycleisP > Q >R —>S—> T — P.

Some graphs or digraphs are in two or more parts. For example, consider the graph
whose vertices are the stations of the London Underground and the New York Subway.
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and whose edges are the lines joining adjacent stations. It is clearly impossible to
travel from Trafalgar Square to Grand Central Station using only edges of this graph,
but if we confine our attention to the London Underground part only, then we can
travel from any station to any other. A graph or digraph that is ‘in one piece’, so that
any two vertices are connected by a path, is connected; a graph or digraph that is
in more than one piece is disconnected (see Fig. 0.9). We discuss connectedness in
Chapters 1, 2 and 6.

We are sometimes interested in connected graphs with only one path between each
pair of vertices. These graphs contain no cycles and are called trees (see Fig. 0.10).
They generalize the idea of a family tree, and are considered in Chapter 3.

P Q T
S R Vv U
Figure 0.9 Figure 0.10

Earlier we saw how the graph of Fig. 0.3 can be redrawn as in Figs 0.4 and 0.5 so
as to avoid crossings of edges. Any graph that can be redrawn without crossings in
this way is called a planar graph. In Chapter 4 we give several criteria for planarity.
Some of these involve the properties of particular ‘subgraphs’ of the graph in ques-
tion; others involve the fundamental notion of duality.

Planar graphs also play an important role in colouring problems. In our ‘road-map’
graph, let us suppose that Shell, Esso, BP and Gulf wish to erect five garages between
them, and that for economic reasons no company wishes to erect two garages at
neighbouring corners. Then Shell can build at P, Esso can build at O, BP can build at
S, and Gulf can build at 7, leaving either Shell or Gulf to build at R (see Fig. 0.11).
However, if Gulf backs out of the agreement, then the other three companies cannot
erect their garages in the specified manner.

Esso

P. Q
R
Shell
or Gulf
T S

Figure 0.11
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We discuss such problems in Chapter 5, where we try to colour the vertices of
a simple graph with a given number of colours so that each edge of the graph joins
vertices of different colours. If the graph is planar, then we can always colour its
vertices in this way with only four colours — this is the celebrated four-colour
theorem. Another version of this theorem is that we can always colour the countries
of any map with four colours so that no two neighbouring countries share the same
colour (see Fig. 0.12).

Figure 0.12

In Chapter 6 we investigate the celebrated marriage problem, which asks under
what conditions a collection of girls, each of whom knows several boys, can be married
so that each girl marries a boy she knows. This problem can be expressed in the lan-
guage of a branch of set theory called ‘transversal theory’, and is related to problems
of finding disjoint paths connecting two given vertices in a graph or digraph.

Chapter 6 conciudes with a discussion of network flows and transportation prob-
lems. Suppose that we have a transportation network such as in Fig. 0.13, in which
P is a factory, R is a market, and the edges of the graph are channels through which
goods can be sent. Each channel has a capacity, indicated by a number next to the
edge, representing the maximum amount of a commodity that can pass through that
channel. The problem is to determine how much of the commodity can be sent from
the factory to the market without exceeding the capacity of any channel.

Figure 0.13

We conclude with a chapter on matroids. This ties together the material of the
previous chapters, and follows the maxim ‘be wise — generalize!” Matroid theory,
the study of sets with ‘independence structures’ defined on them, generalizes both
the linear independence of vectors and some results on graphs and transversals from
earlier in the book. However, matroid theory is far from being ‘generalization for
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generalization’s sake’. On the contrary, it gives us clearer insights into several graph-
ical results involving cycles and planar graphs, and provides simple proofs of results
on transversals that are awkward to prove by more traditional methods. Matroids have
played an important role in the development of combinatorial ideas in recent years.

We hope that this Introduction has been useful in setting the scene and describing
some of the treats that lie ahead. We now embark upon a formal treatment of the
subject.

Exercises

0.1 Write down the number of vertices, the number of edges and the degree of each
vertex in:
(i) the graph in Fig. 0.3;
(ii) the tree in Fig. 0.14.

A B C
D E E S s
Figure 0.14 Figure 0.15

0.2 Draw the graph representing the road system in Fig. 0.15, and write down the number
of vertices, the number of edges and the degree of each vertex.

0.3°  Figure 0.16 represents the chemical molecules of methane (CH,) and propane (CHj).
(i) Regarding these diagrams as trees, what can you say about the vertices represent-
ing carbon atoms (C) and hydrogen atoms (H)?
(if) Draw a tree that represents the molecule with formula C,H, (hexane).
(iii) There are two different chemical molecules with formula C,H,,. Draw trees that
represent these molecules.

I [
H—C—H H—C—C—C—H

|- |

,L H H H

methane propane

Figure 0.16
0.4 Draw a graph that represents the family tree in Fig. 0.17.

John
1

f T T 1
Joe Jean Jane Jill

Jenny Kenny Bill Ben
Figure 0.17
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0.5°  John likes Joan, Jean and Jane; Joe likes Jane and Joan; Jean and Joan like each other.
Draw a digraph illustrating these relationships between John, Joan, Jean, Jane and Joe.

0.6 Snakes eat frogs and birds eat spiders; birds and spiders both eat insects; frogs eat
snails, spiders and insects. Draw a digraph representing this predatory behaviour.

0.7 Draw a graph with vertices 4, B, . . . , M that shows the various routes that one can take
when tracing the Hampton Court maze in Fig. 0.18.

Figure 0.18



Chapter 1

Definitions and examples

I hate definitions!
Benjamin Disraeli

In this chapter, we lay the foundations for a proper study of graph theory. Section 1.1
formalizes some of the graph ideas in the Introduction, Section 1.2 provides a variety
of examples, and Section 1.3 presents two variations on the basic idea. In Section 1.4
we show how graphs can be used to represent and solve three problems from recrea-
tional mathematics. More substantial applications are deferred until Chapters 2 and 3,
when we have more machinery at our disposal.

1.1 Definitions

A simple graph G consists of a non-empty finite set /(G) of elements called vertices
(or nodes or points) and a finite set £(G) of distinct unordered pairs of distinct elements
of V(G) called edges (or lines). We call V(G) the vertex-set and E(G) the edge-set
of G. An edge {v, w} is said to join the vertices v and w, and is usually abbreviated
to vw. For example, Fig. 1.1 represents the simple graph G whose vertex-set V(G) is
{u, v, w, z}, and whose edge-set E(G) consists of the edges uv, uw, vw and wz.

In any simple graph there is at most one edge joining a given pair of vertices.
However, many results for simple graphs also hold for more general objects in which
two vertices may have several edges joining them; such edges are called multiple
edges. In addition, we may remove the restriction that an edge must join two distinct
vertices, and allow loops — edges joining a vertex to itself. The resulting object, with
loops and multiple edges allowed, is called a general graph — or, simply, a graph
(see Fig. 1.2). Note that every simple graph is a graph, but not every graph is a
simple graph.

v w v w

Figure 1.1 Figure 1.2
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Thus, a graph G consists of a non-empty finite set ¥(G) of elements called
vertices and a finite family E(G) of unordered pairs of (not necessarily distinct)
elements of V(G) called edges; the use of the word ‘family’ permits the existence of
multiple edges. We call V(G) the vertex-set and £(G) the edge-family of G. An edge
{v, w} is said to join the vertices v and w, and is again abbreviated to vw. Thus in
Fig. 1.2, ¥(G) is the set {u, v, w, z} and E(G) consists of the edges uv, vv (twice), vw
(three times), uw (twice) and wz. Note that each loop vv joins the vertex v to itself.
Although we sometimes need to restrict our attention to simple graphs, we shall prove
our results for general graphs whenever possible.

Remark. The language of graph theory is not standard — all authors have their own
terminology. Some use the term ‘graph’ for what we call a simple graph, while others
use it for graphs with directed edges, or for graphs with infinitely many vertices or
edges; we discuss these variations in Section 1.3. Any such definition is perfectly
valid, provided that it is used consistently. In this book:

All graphs are finite and undirected, with loops and multiple edges allowed unless
specifically excluded.

Isomorphism

Two graphs G, and G, are isomorphic if there is a one—one correspondence between
the vertices of G, and those of G, such that the number of edges joining any two
vertices of G, equals the number of edges joining the corresponding vertices of G,.
For example, the two graphs in Fig. 1.3 are isomorphic, under the correspondence

USLvemwenxep yeq ror.

X y z n q
Figure 1.3

For many problems, the labels on the vertices are unnecessary and we drop them.
We then say that two ‘unlabelled graphs’ are isomorphic if we can assign labels to
their vertices so that the resulting ‘labelled graphs’ are isomorphic. For example, we
regard the unlabelled graphs in Fig. 1.4 as isomorphic, since the labelled graphs in
Fig. 1.3 are isomorphic.

The difference between labelled and unlabelled graphs becomes more apparent
when we try to count them. For example, if we restrict ourselves to graphs with three
vertices, then there are eight different labelled graphs (see Fig. 1.5), but only four



10 Definitions and examples

Figure 1.4
1 1 1 1
@ \ / [
® [ J [ ] [ J *—o
3 2 3 2 3 2 3 2
1 1 1 1
3 2 3 2 3 2 3 2
Figure 1.5
® e o6 —o
Figure 1.6

unlabelled ones (see Fig. 1.6). It is usually clear from the context whether we are
referring to labelled or unlabelled graphs.

Connected graphs

We can combine two graphs to make a larger graph. If the two graphs are G, and G,
and their vertex-sets V(G,) and V(G,) are disjoint, then their union G, U G, is the
graph with vertex-set ¥(G,) U V(G,) and edge-family E(G,) U E(G,) (see Fig. 1.7).

Most of the graphs discussed so far have been ‘in one piece’. A graph is connected
if it cannot be expressed as a union of graphs, and disconnected otherwise. Clearly,
any disconnected graph G can be expressed as the union of connected graphs, each of
which is called a component of G; a disconnected graph with three components is
shown in Fig. 1.8.

a X a X

(@
n

G1 Gz G‘ v} G2
Figure 1.7



Figure 1.8
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When proving results about graphs in general, we can often obtain the correspond-
ing results for connected graphs and then apply them to each component separately.
A table of all the unlabelled connected simple graphs with up to five vertices is given

in Fig. 1.9.
1 2 3 4
® *—@ *—o—o A
S/L. 6 i 4 8 9 10 ;
11 12 13 14 15 1

I [

bidisifalisd
2IEWNEE
SEEGE

Figure 1.9



