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High-Yield Biochemistry is based on a series of notes prepared in response to repeated and impas-
sioned requests by my students for a “complete and concise” review of biochemistry. It is designed
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@ Acidic Dissociation

A. An acid dissociates in water to yield a hydrogen ion (H") and its conjugate base.

Acid Conjugate base
(acetic acid) (acetate)
CH,COOH = H'+ CH,CO0"

1.0

2

B. A base combines with H* in water to form its conjugate acid.

Base Conjugate acid
(ammonia) (ammonium ion)
NH, + H* = NH}

H,0

C. In the more general expression of acidic dissociation, HA is the acid (proton donor)

and

A~ is the conjugate base (proton acceptor).
k)
HA - HY + A~
k

=],

@ Measures of Acidity

A. pK,
1.

w N

When acidic dissociation is at equilibrium, the acidic dissociation constant, K , is
defined by:

[H']1A]
k=R

pK, is defined as —log[K_].

pK, is a measure of the strength of an acid.

Stronger acids are more completely dissociated. They have low pK, values
(H* binds loosely to the conjugate base). Examples of stronger acids include the
first dissociable H* of phosphoric acid (pK, = 2.14) and the carboxyl group of
glycine (pK, = 2.34).

Weaker acids are less completely dissociated. They have high pK_ values. (H*
binds tightly to the conjugate base.) Examples of weaker acids include the amino
group of glycine (pK, = 9.6) and the third dissociable H* of phosphoric acid
(pK, = 12.4).



CHAPTER 1

pH
1. When the equation defining Ka is further rearranged and expressed in logarithmic
form, it becomes the Henderson-Hasselbalch equation:

_pKa + log [A7]
H=""THa]

2. pH is a measure of the acidity of a solution.

By definition, pH equals —log[H™].

A neutral solution has a pH of 7.

An acidic solution has a pH of less than 7.

An alkaline solution has a pH of greater than 7.

pp TP

@ Buffers

A.

A buffer is a solution that contains a mixture of a weak acid and its conjugate base. It
resists changes in [H*] on addition of acid or alkali.

The buffering capacity of a solution is determined by the concentrations of weak acid

and conjugate base.

1. The maximum buffering effect occurs when the concentration of the weak acid
[HA] is equal to that of its conjugate base [A7].

2. If [A7] = [HA], then [AT]/[HA] = 1.

3. When the buffer effect is at its maximum, the pH of the solution equals the pK,
of the acid.

The buffering effect is readily apparent on the titration curve for a weak acid such as
H,PO,” (Figure 1-1).

1. The shape of the titration curve is the same for all weak acids.

2. At the midpoint of the curve, the pH equals the pKa.

3. The buffering region extends one pH unit above and below the pKa.

100 T T T T T T T T 100

9.0 9.0

8.0 " 8.0

7.0 E 7.0 1 | Buffer

6.0 . 6.0 | | region
I 50 4 | Buffer T 50
Q. el

<«—pKa =47 I i e

40  y fegion 40

3.0 5 3.0

2.0 . 2.0

1.0 - 1.0} .

00 1 1 1 1 1 1 1 1 1 00 1 1 1 1 1 1 1 i - 1

0.0 0.1 0.20.3 04 0.506 0.7 0.8 091.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.91.0
Equivalents of alkali Equivalents of alkali

® Figure 1-1 Titration curves for acetic acid (CH,COOH) (feft) and phosphoric acid (H,PO;) (right). H,PO; is the more
effective buffer at physiologic pH.
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@ Acid—Base Balance

A. Because pH strongly affects the stability of proteins and the catalytic activity of enzymes,

biological systems usually function best near neutrality, that is, near pH = 7. Under
normal conditions, blood pH is 7.4 (range, 7.37-7.42).

The acid-base pair dihydrogen phosphate (H,PO;)-monohydrogen phosphate
(HPO,>7) is an effective buffer at physiologic pH (see Figure 1-1). Phosphate is an
important buffer in the cytoplasm.

The carbon dioxide (CO,)-carbonic acid (H,CO,)-bicarbonate (HCO;) system is the
principal buffer in plasma and extracellular fluid (ECF).

Carbonic anhydrase
CO, + H,0 = H,CO, = H* + HCO;
1. CO, from tissue oxidation reactions dissolves in the blood plasma and ECE
2. CO, combines with H,O to yield H,CO;. This reaction is catalyzed in red blood
cells by carbonic anhydrase.
3. H,CO, dissociates to yield H" and its conjugate base, HCO; .

4. In this system, CO, is behaving like an acid, so the Henderson-Hasselbalch equa-
tion can be written:

pH = 6.1 + log [HCO;1/(0.0301) PCO,
where [HCO; ] is in mM and PCO, is in mm Hg.

The CO,-H,CO,-HCO; buffer system is effective around the physiologic pH of 7.4,

even though the pKa is only 6.1, for four reasons:

1. The supply of CO, from oxidative metabolism is unlimited, so the effective concen-
tration of CO, is very high.

2. Equilibration of CO, with H,CO, (catalyzed by carbonic anhydrase) is very rapid.

3. The variation in CO, removal by the lungs (respiration) allows for rapid changes
in the concentration of the H,CO,.

4. The kidney can produce or excrete HCOJ, thus changing the concentration of the
conjugate base.

€ Acid—Base Disorders

A. ACIDOSIS occurs when the pH of the blood and ECF falls below 7.35. This condition

results in central nervous system depression, and when severe, it can lead to coma and

death.

1. In metabolic acidosis, the [HCO; ] decreases as a consequence of the addition of
an acid stronger than H,CO, to the ECE

2. In respiratory acidosis, the partial pressure of CO, (PCO,) increases as a result
of hypoventilation (Figure 1-2).

ALKALOSIS occurs when the pH of the blood and ECF rises above 7.45. This condi-

tion leads to neuromuscular hyperexcitability, and when severe, it can result in tetany.

1. In metabolic alkalosis, the [HCO; ] increases as a consequence of excess acid loss
(e.g., vomiting) or addition of a base (e.g., oral antacid preparations).

2. In respiratory alkalosis, the PCO, decreases as a consequence of hyperventilation.
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Normal Metabolic Respiratory
Normal ranges - acidosis  alkalosis  acidosis  alkalosis
48
40
=
E 80f
23-25 mM = powlll o= 7.7
Q 20t 24 :
O 22
T
L2l 12
7.37-7.42 0 ' ' ' '
~ 10} =
T agl pH =7.22 pH = 7.20 [N
IS
E ol .
38-42 mm Hg é“ 40 + 45
o 50
60 L 60

@ Figure 1-2 Bar chart that demonstrates prototypical acid-base states of extracellular fluid (ECF). HCO; is plotted up
from zero, and PCO, is plotted down from zero.

€ (linical Relevance: Diabetic Ketoacidosis

A.

Uncontrolled insulin-dependent diabetes mellitus (type I diabetes) involves
decreased glucose utilization, with hyperglycemia, and increased fatty acid oxidation.

PATHOGENESIS OF KETOACIDOSIS

1. Increased fatty acid oxidation leads to excessive production of acetoacetic and
3-hydroxybutyric acids and of acetone, which are known as ketone bodies.

2. Acetoacetic and 3-hydroxybutyric acids dissociate at body pH and release H*,
leading to a metabolic acidosis.

The combination of high blood levels of the ketone bodies and a metabolic acidosis is
called ketoacidosis.

The clinical picture involves dehydration, lethargy, and vomiting, followed by drowsi-
ness and coma.

THERAPY consists of correcting the hyperglycemia, dehydration, and acidosis.

1. Insulin is administered to correct the hyperglycemia.

2. Fluids in the form of physiologic saline are administered to treat the dehydration.

3. Insevere cases, intravenous sodium bicarbonate (Na*HCO; ) may be administered
to correct the acidosis.



Acids and Proteins

@ TFunctions of Proteins

A.

C.

D.

Specific binding to other molecules

Catalysis

Structural support

Coordinated motion

@ Proteins as Polypeptides

A. Proteins are polypeptides: polymers of amino acids linked together by peptide bonds
(Figure 2-1).

1.
2.

Proteins are synthesized from 20 different amino acids.

Some of the amino acids are modified after incorporation into proteins (e.g., by
hydroxylation, carboxylation, phosphorylation, or glycosylation). This is called
post-translational modification.

The amino acids are called a-amino acids because they have an amino (-NH,) group,
a carboxyl (-COOH) group, and some other “R-group” attached to the a-carbon (see
Figure 2-1).

1

Aliphatic R-groups that are nonpolar (uncharged, hydrophobic) (see Figure 2-2)
are characteristic of alanine, valine, leucine, isoleucine, and proline, which is an
imino acid (a secondary amine). Glycine has hydrogen (-H) as its R-group.
Aromatic R-groups are components of phenylalanine, tyrosine, and tryptophan
(see Figure 2-2). Phenylalanine and tryptophan are nonpolar. Tyrosine contains a
polar hydroxyl group.

Hydroxyl-containing R-groups that are mildly polar (uncharged, hydrophilic)
are part of serine and threonine (see Figure 2-2).

Sulfur-containing R-groups are characteristic of cysteine (a good reducing agent)
and methionine (see Figure 2-2).

Carbonyl-containing R-groups include the carboxylates aspartic acid and glu-
tamic acid and their amides asparagine and glutamine. The carboxylates are neg-
atively charged and polar, and their amides are uncharged and mildly polar (see
Figure 2-2).

Basic R-groups, which are positively charged and polar (hydrophilic), are charac-
teristic of lysine, arginine, and histidine (see Figure 2-2).
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Carboxyl group Peptide bond
Amino group (I:OOH (I:OO_ ?1 l;l ?2 ?
H2N—CIJ—H +H3N—IC—H H2N—(I3—E—N—(I3—C—OH
R R H O H
o-Amino acid a~Amino acid Dipeptide
(formal structure) [ionized (zwitterion) structure (formal structure)

predominates at physiologic pH]

® Figure 2-1 Structure of an a-amino acid and a dipeptide.

C. Each protein has a characteristic shape, or conformation.
1. The function of a protein is a consequence of its conformation. The conforma-
tion of a functional protein is also called its native structure.
2. The amino acid sequence of a protein determines its conformation.
a. The rigid, planar nature of peptide bonds dictates the conformation that a
protein can assume.
b. The nature and arrangement of the R-groups further determine the confor-
mation.

@ Protein Structure

Four levels of hierarchy in protein conformation can be described.

A. PRIMARY STRUCTURE refers to the order of the amino acids in the peptide chain
(Figure 2-3).
1. The free a-amino group, written to the left, is called the amino-terminal or
N-terminal end.
2. The free a-carboxyl group, written to the right, is called the carboxyl-terminal or
C-terminal end.

B. SECONDARY STRUCTURE is the arrangement of hydrogen bonds between the peptide
nitrogens and the peptide carbonyl oxygens of different amino acid residues (Figure 2-4;
see also Figure 2-3).

1. In helical coils, the hydrogen-bonded nitrogens and oxygens are on nearby amino
acid residues (see Figure 2-3).
a. The most common helical coil is a right-handed a-helix.
b. a-keratin from hair and nails is an a-helical protein.
c. Myoglobin has several o-helical regions.
d. Proline, glycine, and asparagine are seldom found in a-helices; they are “helix
breakers.”
2. In B-sheets (pleated sheets), the hydrogen bonds occur between residues on
neighboring peptide chains (see Figure 2-3).
a. The hydrogen bonds may be on different chains or distant regions of the same
chain.
b. The strands may run parallel or antiparallel.
c. Fibroin in silk is a B-sheet protein.

C. TERTIARY STRUCTURE refers to the three-dimensional arrangement of a polypeptide
chain that has assumed its secondary structure (see Figure 2-3). Disulfide bonds
between cysteine residues may stabilize tertiary structure.
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Aliphatic, nonpolar

COO~ COO~ (I':OO‘ Cl)OO' CIDOO— COO"
[ I
HaN=C—H HaN'™— C—H HaN'™— C—H HaN'™— O—H HgN'™— C—H . H
| HoN CH
- CH, CH CH, HC —CHjy 2 | | ¢
7N\ | |
H,C CH, /C\H CH, H, C——CH,
I
HaC CH, CH,
Glycine Alanine Valine Leucine Isoleucine Proline
(Gly) (Ala) (Val) (Leu) (lle) (Pro)
@ C_ Sulfur-containing >
& s U
COO~ C|300‘ CI200‘ CI)OO‘ ICOO‘
I
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CH, CH, CH, CH, CH,
— | |
© NH SH CH,
|
S
OH |
Phenylalanine Tyrosine Tryptophan Cysteine Methionine
(Phe) (Tyr) (Trp) (Cys) (Met)
(I)OO‘ ICOO‘ (IJOO‘ (IDOO‘ COO~
]
HaN™ (I: -H HaN™ (I: -H HaN*™ ? —H HaN*- <|3 -H HaN*™ C—H
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I | 1 |
OH CH3 |CH2 CH2 C= Q
I
CH CH CH
2 e || V4
CH, NH —N*
| ] N H
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@ Figure 2-2 The 20 amino acids found in proteins, grouped by the properties of their R-groups.



