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Preface

The coordination of logistics activities in a supply chain has received a lot of
attention in operations management research. In a typical supply chain, raw materials
are transported to factories where items are produced, and finished products are
either shipped to warehouses for temporary storage or delivered directly to the
retailers or the customers. To achieve better operational performance, the
coordination and integration of production and distribution is an important
consideration.

In this book, we study five models of coordinated scheduling of production and
distribution operations. The motivations of five models are different.

In Chapter 1, we consider an order acceptance and scheduling model with job
delivery times and machine availability constraints. Order acceptance and scheduling
(OAS) is to balance order acceptance (to increase revenue and guarantee satisfaction of
customers) and order rejection (to reduce production or delivery load so as to meet
limited production capacity restrictions and tight delivery requirements ). In our model,
due to specific production constraints of machine availability and the delivery times of
finished orders, some orders (jobs) have to be rejected or outsourced.

In Chapter 2, we study an inbound logistics scheduling model with limited
unloading capacity, which is motivated by the inbound logistics system for a major
automobile manufacturing company in China. The research problem can be reduced to
a parallel machine scheduling problem with multiple common unloading servers. In
the proposed scheduling model, after processing a job, an unloading server will be
needed to remove the job from the machine. Only after its current job is unloaded, a
machine can start processing the next job.

In Chapter 3, we study machine scheduling with raw material pickup and
finished job delivery. Traditional machine scheduling models focus on the
optimization of schedules under various machine environments, processing
characteristics and constraints, and performance measures. However, these models
normally ignore the transportation arrangements of the incoming materials and the

delivery arrangements of the finished products. In this chapter, we develop and
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analyze a scheduling model that takes into account the machine schedule and the
pickup and delivery plan of the supply of the raw materials and the shipment of
finished jobs.

In Chapter 4, we turn to the study of coordinated scheduling of customer orders
with decentralized machine locations. In many production and transportation planning
environments, the delivery of finished goods is constrained by the processing of
different component parts of the product. It is also quite common that different
components of a product have to be processed by their own dedicated machines or
work centers. For example, in the production of personal computer systems, the
computers and monitors are usually produced by different facilities at different
locations. However, both the computers and monitors of the finished products must be
bundled together before they can be delivered to customers. In order to obtain a
system-wide optimal production and delivery plan, it is essential to consider the
sequencing and scheduling of the tasks at each machine and the delivery
arrangements of the finished tasks to their final destinations at the same time. When
such an integrated plan is developed, the scheduler faces a tradeoff between
providing quick deliveries and minimizing shipping costs. Quick deliveries minimize
customers’ waiting time while low shipping costs directly benefit the company’s
bottom line. Thus, we consider a scheduling which reflects such production and
delivery arrangements.

In Chapter 5, we study the coordination of cargo unloading and storage
arrangements at cargo terminals. We specifically consider a problem which is
motivated by the operations of air cargo terminal operators at the Hong Kong
International Airport ( HKIA ). In this problem, there are a number of outbound
flights with confirmed air waybills. The terminal operator would like to schedule the
arrival of the delivery trucks so that some of the shipments can be transferred directly
to the departing flights, while other shipments will be transferred to the storage area
of the terminal and will incur extra handling and storage costs. The objective is to

obtain a feasible schedule so as to minimize the total cost of operations.
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Chapter 1
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with Job Delivery Times and Machine
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1.1 Introduction

Order acceptance and scheduling ( OAS) has atiracted considerable attention
from scheduling researchers as well as production managers who practice it in the
past decades. The key issue in OAS is to balance order acceptance (to increase
revenue and guarantee satisfaction of customers) and order rejection (to reduce
production or delivery load so as to meet production capacity or delivery
requirements ) . One important application of OAS arises in make-to-order production
systems with limited production capacity or tight delivery requirements, where order
rejection and scheduling decisions have to be made simultaneously. In practice, due
to production capacity constraints and short delivery due dates, a typical
manufacturer may have to reject some orders which require long processing or
delivery times but make relatively small profits. Another important application of OAS
occurs in scheduling when outsourcing is an alternative option. OAS combines
outsourcing and production scheduling decisions together.

In traditional OAS models the manufacturer ( machine) is usually assumed to
have the capacity of processing orders continuously. But in reality, production could
be interrupted due to some unpredictable reasons such as machine breakdown or
maintenance, production setup, worker vacation and so on, which leads to the
scenario that there are only a number of discontinuous time intervals available to
process the orders in question. When production capacity and machine available time
have restrictions, to reduce production load, the manufacturer may have to reject
some orders which require long processing times but make relatively small profits, or
outsource the production of some orders, in this case the profit of those outsourced
orders is reduced. In this chapter, we study a single-machine OAS model with
machine availability constraints and order delivery times. In the proposed model, the
machine is available to process orders only within a number of given discontinuous
time intervals, and the manufacturer is allowed to reject some orders. When an order
is rejected, an order-dependent penalty will occur. Each order has a specific delivery
times after its processing. The manufacturer needs to balance the production capacity

and the delivery requirement ( the time span of delivering all accepted orders to their
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customers) and the total penalty of all rejected jobs.

OAS has been studied extensively in the production scheduling literature. Guerrero
and Kern (1988 ) provided the rational to accept and reject orders effectively. Slotnick
and Morton (1996) and Ghosh (1997) studied single-machine OAS with the objective of
maximizing revenue and minimizing lateness penalties. Slotnick and Morton (2007 )
extended their previous work ( Slotnick and Morton, 1996) by replacing lateness
with tardiness in the objective function. Rom and Slotnick (2009 ) developed a
genetic algorithm for the same problem and compared it with the myopic heuristic
given in Slotnick and Morton (2007 ). Nobibon and Leus (2011) studied an OAS
model with “firm planned orders as well as potential orders”. Oguz et al. (2010)
included sequence-dependent setup times and two-level due-dates in an OAS model
with weighted tardiness. Cesaret et al. (2012) developed a tabu algorithm for the
same problem and compared it with the two heuristics proposed in Oguz et al.
(2010) . Yang and Geunes (2007) considered an OAS model with controllable
processing times. Chen and Li (2008 ), Lee and Sung (2008a, 2008hb) and Qi
(2008, 2009, 2011) considered OAS models with outsourcing options. An excellent
literature survey on the topic of OAS is provided by Slotnick (2011) recently.

OAS is equivalent to machine scheduling with rejection ( MSR ) in
mathematics. Bartal et al. (2000) first introduced a multi-processor MSR model to
minimize the makespan of all accepted jobs plus the total rejection penalty of all
rejected jobs. Seiden (2001 ) and Hoogeveen et al. (2003 ) studied the on-line
version and the off-line version in Bartal et al. (2000) when job preemption is
allowed, respectively. Epstein et al. (2002 ) considered on-line MSR with unit-
processing-time jobs and the total completion time of all accepted jobs. Engels et al.
(2003 ) studied single-processor MSR with total weighted completion times of all
accepted jobs, and recently, Kellerer and Strusevich (2013 ) improved the related
results. MSR models with industrial applications are studied by Cheng and Sun
(2009), Zhang et al. (2009,2010), Lu et al. (2008) and Lu et al. (2009) , among
others. A very recent survey on MSR is provided by Shabtay et al. (2013). All of the
OAS and MSR models mentioned above have the potential assumption that machines
can process jobs continuously, which differ from our model.

Our model is an extension of machine scheduling with availability constraints
(MSAC) . MSAC also has been studied extensively. The surveys of MSAC are
provided by Schmidt (2000) and Ma et al. (2010). In this paper we consider a
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single-machine model with machine availability constraints. In the following we only
review the previous work of MSAC with a single machine, and whose objective is
limited to minimization of makespan. For convenience, we define MSAC-k to be the
MSAC problem to minimize makespan with a single machine and k time intervals
during which the machine is not allowed to process jobs. Lee (1996) showed that
MSAC-1 has been NP-hard, and that MSAC-k is NP-hard in the strong sense if k is
arbitrary. He et al. (2005) proposed a fully polynomial time approximation scheme
(FPTAS) for MSAC-1. Breit et al. (2003 ) showed that no polynomial time
approximation algorithm with a fixed performance ratio exists for MSAC-2. When
every job also has a delivery time, Yuan et al. (2008) showed that MSAC- k can be
solved by a pseudo-polynomial time algorithm if % is fixed. They also developed a
polynomial time approximation scheme (PTAS) for MSAC-1. Kacem (2009 ) studied
a similar problem to Yuan et al. (2008), and proposed an FPTAS by exploiting the
well-known approach of Ibarra and Kim (1975) .Wu and Lee (2003 ),
Gawiejnowicz (2007 ), and Ji et al. (2006) studied MSAC with deterioration,
where the processing time of a job is a linear function of its starting time. To the best
of our knowledge, our model is the first to examine OAS with machine availability
constraints.

Our model is also an extension of machine scheduling with job delivery
times. Machine scheduling with job delivery times is also a classical scheduling model
(see, for example, Hall and Shmoys, 1989, Jackson, 1955, Kise et al. , 1979,
Lawler et al. , 1993, and among others), in which each job is delivered to its
customer at its processing completed time by a specific vehicle with a given delivery
time. For machine scheduling with delivery times, a classical result is that, the
problem 1 | ¢; | D, can be solved in O(nlogn) time by using the “largest delivery
time first” (LDT) rule (see Jackson, 1955). Lawler et al. (1993) prove that
problem 11 r;, ¢l D,,, is strongly NP-hard. For the same problem, Kise et al. (1979)
show that LDT rule is 2-competitive, and Hall and Shmoys (1989, 1992) develop
two polynomial time approximation schemes. Mastrolilli ( 2003 ) develops an
improved approximation scheme for the same problem. When preemption is allowed,
it is shown in Baker et al. (1983) that problem 1 | prec, pmtn, r;, ¢;1 D,,, can be
solved in O(n*) time.

We now describe our problem formally as follows. Given a set of n jobs J = {J,,
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Js,...,J,| and a single machine, each job J; e Jis associated with a processing time
p; » a job delivery time g; and a rejection penalty w; . Job J; is either accepted and
then processed on the machine, or it is rejected by the machine and then a rejection
penalty w; is paid. Penalty w; is regarded as the cost of losing or outsourcing job J; . Also
given 2m + 1 non-negative integers a,,a, ,-..,a,, such that0 = ¢, < a, < ... < a,, ,
we assume that in the planning horizon the machine is available to process jobs within
time intervals [ a,,, + ©) and [ a,_,,a,_, ]| fori =1,2,...,m , but it is not allowed
to process any job during time interval (a,;_,,a, ) for anyi = 1,2,...,m. In other
words, there are m Uls (time intervals during which the machine is not allowed to
process jobs) and m + 1 Als (time intervals during which the machine is allowed to
process jobs) in the planning horizon. Let A be the set of jobs accepted, and R =
J\A be the set of jobs rejected. Let C; be the completion time of job J; if J; e A, and
let D, = C, + P; be the completion time of delivery of job J; to its customer. The
problem is to determine A and a feasible schedule of jobs in A on the machine so as

to minimize the objective function Z =max{D;|J,e A} + ¥ w;, i. e. , the completion
JieR

time of the delivery of all accepted jobs plus the total penalty of all rejected jobs.

In our model,, we assume that the machine can process at most one job at a time,
that job preemption is not allowed, and that p; and w; are non-negative integers for
j =1,2,...,n. Following the standard classification scheme for scheduling problems

[7,18], the proposed scheduling problem is denoted as
11FB,rej,q; 1D, + Xw;,
where “FB” means that accepted jobs must be processed in free time slots to avoid

forbidden intervals, while “rej” means that job rejection is allowed. When m (i. e. ,

the number of Uls) is a fixed number, we denote the problem as
1IFB(m) ,rej,q;1D,,, + XZw,

When ¢; =0 for each job, i. e. , the job delivery time of each job is zero, we denote

the problem as

11FB,rejlC,.. + Zw.

]
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Machine scheduling with forbidden intervals ( machine maintenances) has been
widely studied in the past two decades. NP-hardness results of problem 1|FBIC,
are provided by Lee (1996) and Scharbrodt et al. (1999). For problem 1/FB(1) |

the performance ratio of the LPT heuristic is shown to be L1 , and the bound is

c

max ?

tight (Lee, 1996). A fully polynomial time approximation scheme is given by He et
al. (2005). Some related work on scheduling with forbidden intervals can also be
found in the study of Cassady and Kutanoglu (2003), Chen (2006), Graves and
Lee(1999). A survey on machine scheduling with forbidden intervals is provided by
Schmidt (2000). Study of a relaxed version in which machine maintenances are not
fixed previously can be found in Akturk et al. (2003, 2004) , Qi (2007), Qi et al.
(1999). Note that when job preemption is allowed, problem 11FB(m),pmtn,g; |
D, is solved in O(nlogn +mlogm) time by Yuan and Lin (2005).

For convenience, we introduce the following notations, which will be used

throughout the paper:

P = Z s P = the total processing time of all the jobs;

€
W:szwj =the total rejection penalty of all the jobs;
jE

U=1{J eJl w >p;| =the set of jobs with processing times less than their
rejection penalty ;

V =1{J, e Jl w;<p;} =the set of jobs with processing times no less than their
rejection penalty ;

P(U) = Z P = the total processing time of all the jobs in U ;

the optimal solution ;

o
A the set of all accepted jobs ino ™ ;

R™ = J\A" =the set of all rejected jobs ino " ;
C

= the makespan of A®, i. e. , the completion time of the last accepted job

D,.. = the completion time of delivery for all the jobs in A" ;

7 = max | D;1J; eAl +12ij = the objective function value of o " ;
jE

@,,,, = a,, + P = the largest possible makespan of all accepted jobs ing " ;
L, = a, — ay_, = the length of thei-th UL (i = 1,2,...,m );
L', = ay_, —ay_, = the length of thei-th AT (¢ =1,2,....m +1);

i
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. S Sakiiil 4
&: any given small constant such that — is a positive integer.
€

The rest of the chapter is organized as follows. In Section 1.2 we develop a
+ X w;.In
Section 1. 3 we provide non-approximability results to problem 11¥B(2) ,rej,q;1D,,, +
Y w;. In Section 1.4 we present an FPTAS for the special case 11FB(1) ,rej,|C,,, +

2 w;. In Section 1.5 we present a polynomial time approximation scheme (PTAS) for

pseudo-polynomial algorithm to solve problem 1 |FB (m),rej,q; | D

max

the special case 1 | FB(1),q;|D,,, .In Section 1.6 we develop a (2 + g)-
approximation for the special case with L," = L" , L, = Lfori =1,2,...,mand ¢; =

0 forj=1,2,...,n. Some concluding remarks are provided in Section 1. 7.

1.2 An Optimal Pseudo-polynomial Algorithm
When m Is Fixed

Note that if m is arbitrary, then problem 11¥B,rej,g;1D,,, + 2w, is shown to be NP-
hard in the strong sense by reducing from 3-PARTITION (even when each ¢; =0), and
thus an optimal pseudo-polynomial algorithm for 11F¥B,rej,q; | D, + Xw; does not exist
(see Garey and Johnson, 1979). Therefore, in the remainder of this section, we study the
special case when the value of m is fixed. We present a pseudo-polynomial algorithm
to solve 11FB(m) ,rej,q;, 1D, + Yw,.

It is clear that the accepted jobs that are scheduled within the same Al follow
the “largest delivery time first” rule. A schedule is called an LDT schedule if the
accepted jobs that are scheduled within each Al follow the LDT rule. In the
development of our algorithm, we only need to determine an optimal LDT
schedule. Reindex the n jobs in an LDT order, i.e. , q, = ¢, = ... = ¢q, . We now
develop our pseudo-polynomial time algorithm for problem 11FB(m) ,rej,q;1D,,, +
2 w;. In the following of this section, when we mention a solution or schedule, we
always mean an LDT solution or schedule. Without loss of generality, we can assume
that L', <P fori = 1,2,...,m , i.e. , the length of the i-th Al is no greater than the
total processing time of the n jobs (note that if L', <P for some i e {1,2,...,m} , then
it is clear that no accepted job will be scheduled within or after the (i +1)-th Al; in

such a case, we only need to let m =i and only consider the first i Als). Furthermore,
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we also can assume that there are some accepted jobs scheduled within the last Al
[a,, ,a,, ., ] (if not, then for some i e {1,2,...,m =1}, no accepted job will be
scheduled after the i-th Al in such a case, we spend O(m) time to make a guess on
the value of ¢, and only consider the first i Als by letting m =1).

Our DP will keep tracking the total processing time of the jobs scheduled within
each of the m +1 Als when considering the n jobs one by one. Let g¢,,, = {¢;1J; e Ji. To
simplify our DP, we add a dummy job J; with zero processing time and zero job delivery
time. The dummy job J, is fixed to be scheduled within the last Al [ a,, ,a,, ., |so that it
is the first job to be scheduled in the Al (i. e. , the completion time of the delivery of J,
is equal to a,, ).

We now present our DP. Denote the problem instance containing only the first j
jobs Jy ,Jy ..., byl . Foranyj = 1,2,...,n ,D =ay,,a,, +1,...,85,, +quy, 1 =
1,2,....m +1 and g, = 0,1,...,L'

minimum total cost to I; such that the total processing time of all accepted jobs

i define Gj(glvgz, -"vgm+|sD) as the

assigned to Al [ ay, ,,a,_, ] is equal to g, fori = 1,2,...,m +1, and the completion
time of the delivery of all accepted jobs among the first j jobs is equal to D. To
develop recursive relations, consider the following two cases:

Case A:Job J; is rejected. In this case, we have G;(g,,8,,..-,8,,1,D) =
G 1 (81,825 :8ns1,D) +w;

Case B:Job J; is accepted and scheduled to the i-th Al for some i =1,2, ...,
m +1. In this case, J; is the last accepted job to be processed within the i-th Al
currently, and we should have g, =p; and a_, + g, + q; <D. Thus, we have G,
(815w vsBspons sBrii D) B G 1 LBy ven sy = Pryvsvs@asr sl

Combining the two cases above, we have the following dynamic program DP, .

(1) Recurrence relation; Forj = 1,2,...,n,1 =1,2,...,.m +1 and g, = 0,
| (R S G/‘(gl 18253 8m+1,D) =

=12 m+1
piSgisD—gj—ay_»

min{cj—l(gl 9g2""7gm,+l$D) +sz 5 IIliI'l %Gj—l(gla"ﬂgi_pja---’

Em+i ’D) } }‘

(2) Boundary condition;

GO(gI )g29'°')gm+l ’D) =
(3) Objective:

{0. o= =gme1 =0 and D=ay,;

+ o , otherwise.
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min{ G, (g, ,8 - 181, D) 11<i<m+1,0<g,<L, ,a,,<D<a,,,, +q,.
=12, w,m¥l )g=Pt.

Consider the complexity of DP, . Note that we assume L', <P fori = 1,2,...,
m . As a result, the recursive function has at most O(nP""' (P +g¢,, )) states for G,
(g, ,825--+&n+1,D), and each recursion can be calculated in O(m +1) =0(1)
time. Therefore, DP, has a complexity of O(nP""* +nP""'q,,. ). We then have the

following theorem.

Theorem 1. 1| Problem 11FB(m) ,rej, g;| D, + £ w; can be solved in

a pseudo-polynomial time.

1.3 Non-approximability Results

In this section, we will provide some negative results of the development of
approximation algorithms for problem 11FB,rej,q;1D,, + Xw;. As what we will see
it later, when there are two or more Uls, then no approximation exists even for some
very special cases.

We first study the approximability of problem 11FB(2) ,rej|C,,, + Xw, . In this
problem , there are only two Uls, and the delivery time of each job is equal to zero. As

what we will show later, the problem 1|FB(2),rejlC,, + X w; does not admit a

polynomial time approximation algorithm with a constant worst-case bound. As we will
use the well-known NP-hard problem PARTITION in our analysis, for convenience,

we state PARTITION in advance here (see Garey and Johnson, 1979) : Given a set of
t positive integers S = {e,,e,,...,e,| such that z tizle- = 2B. The question is to

1l

decide if there is a subset S’ C § such that 2 e = 2 e. = B.

eed d e;eS\S' i

Theorem 1. 2| Problem 1 |FB(2),rejl C,, + X w,; does not admit a

polynomial time approximation algorithm with worst-case bound better than 2"
unless P=NP.

Proof: We use the gap reduction from PARTITION. Given an instance I of
PARTITION, construct an instance I' of 11FB(2) ,rej|C,,,, + Xw; as follows. There are n =

009



A 7 53 4 By R DA : B 550k

. Coordinated Scheduling of Production and Distribution Operations: Models and Algorithms

t jobs, where the processing time and rejection penalty of job J; are (p;,w;) = (e; ,2" (2B +
1)) forj =1,...,t. There are m = 2 Uls with (a,,a,) = (B,B+1) and (a;,a,) =
(2B +1,2"(2B + 1)) .Such an instance can be constructed in polynomial time
considering the optimal solution value of instance I' . It is obvious that the optimal
solution value of I’ is no less than2B + 1 . If we reject one job, the total penalty is no
less than 2" (2B + 1) . Also, if there exists a job processed after time 2" (2B +1) ,
the corresponding makespan also will be no less than2" (2B + 1) . Thus, to obtain a
solution value of 2B + 1 is equivalent to find a subset of jobs with a total processing
time of B , so that all of the jobs in the subset are processed on the machine within
interval [0,B] without any idle time, while all of the rest of the other jobs are
processed on the machine within interval [B + 1,2B + 1] also without any idle
time. This is equivalent to a solution to PARTITION. If it fails to find out such a
subset of jobs, then solution value is at least 2" (2B + 1) , which is2" times of 2B +
1 . This completes the proof. [l

Through the proof above, we can see that if a,, , the ending point of the last UI,
is much larger than P(U) = JZ,,p ;, the total processing time of the jobs in U = {Jj €

J 1 w; > p;} , then it is impossible to develop a polynomial approximation algorithm to
problem 11FB(2) ,rejl C,,, + Xw; with a constant worst-case bound. However, as we
will show it later, if P(U) > a,, , i.e. , the total processing time in U is greater than
the ending point of the last UI, then a very simple heuristic with a worst-case bound of
2 can be developed to solve problem 11FB(2),rejlC,, + Xw, . The heuristic is
denoted by H, , which is described as follows: Reject all jobs in V', and let all jobs in
U be accepted and processed within time interval [ a,,, + ) as early as possible in
any job sequence. Let Z, be the objective function value of the solution generated by

heuristic H, . We have the following theorem.

Theorem 1. 3| H, is a 2-approximation algorithm to problem 1 |FB(2),

rejl Crax + 2 W; When P(U) > a,,.

Proof: Note that we have Z* > a,, if P(U) > a,,. Remember thatA* and R*
are the set of all accepted jobs and the set of all rejected jobs in the optimal solution,

respectively. We then have
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