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Preface

This book is intended as the supporting materials for the course of “Theory of Elasticity” in
bilingual languages offered in universities and colleges of engineering. It consists of five parts
including introduction, theory of plane problems, solutions to plane problems in rectangular
coordinates, solutions to plane problems in polar coordinates and a brief introduction to the
theory of spatial problems. Each part contains a summary of the basic contents and key points
as well as a large number of typical problems. Solutions to these problems are provided in
detail which will be helpful for undergraduate students understanding. This book can also be
used as a reference for teachers.

The authors will be pleased to make acknowledgement of the helpful suggestions
contributed by the readers of the book.

Guilan Yu
Ziruo Yu
Yanqgiu Xu



Nomenclature

x, y, z —rectangular coordinates
ps ¢ —polar coordinates
f+s fys fo— body force components in rectangular coordinates

fos fo— body force components in polar coordinates
f+s fys f-— surface force components in rectangular coordinates

f,,, j_”q,— surface force components in polar coordinates

u, v, w — displacement components in rectangular coordinates

u,s u,— displacement components in polar coordinates

Ors Oys Oss Tays Tys T — Stress components in rectangular coordinates
6,5 Oys T, — Stress components in polar coordinates

€3 €y €x9 Yays Yses Yo — Strain components in rectangular coordinates
€ €9 Yp — Strain components in polar coordinates

® — bulk stress

6 — bulk strain

@ — Airy stress function

E —Young’s modulus (modulus of elasticity)

G — shear modulus (modulus of rigidity)

p— Poison’s ratio

L, m, n— direction cosines

M — bending moment

F.— shearing force

I — moment of inertia

S — first moment of area
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Chapter 4

Introduction

Basic Contents and Key Points

1.1 Basic Contents

1.1.1 Contents of theory of elasticity

Theory of elasticity, often called elasticity for short, is the branch of solid mechanics
which deals with the stresses and deformations in elastic solids produced by external forces or
changes in temperature.

1.1.2 Some important concepts in theory of elasticity

Body forces: External forces, or the loads, distributed over the volume of the body, are
called body forces. Such as gravitational forces, magnetic forces, or in the case of a body in
motion, inertia forces. Its dimension is L7*MT .

Surface forces: External forces, or the loads, distributed over the surface of the body,
are called surface forces. Such as the pressure of one body on another or hydrostatic
pressure. Its dimension is L™ 'MT 2.

Stress: Under the action of external forces, internal forces will be produced between the
parts of a body, and are usually measured by the intensity, i. e. , by the amount of force per
unit area of the surface on which they act. This intensity is called traction or stress vector of
which the dimension is L"'MT 2. Notice that the traction vector depends on both the spatial
location and the unit normal vector to the surface under study. Thus, even though we may
be investigating the same point, the traction vector still varies as a function of the orienta-
tion of the surface normal.

The nine quantities 0,5 6ys 6.9 Tws Teys Tuws Tis Tiys Ty are the components of the
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traction vector on each of three coordinate planes. These nine components are called the
stress components at a point with ¢, 6, 0. referred to as normal stresses and 7. s 7oy Ter s
Tws Tws Ty Called the shearing stresses. The six shearing stresses are mutually equal in
pairss la€ » T =Tws To =Tyt Te T

If the outward normal to a side of the element is in the positive direction of a coordinate
axis, the stress component on this side will be considered positive as it acts in the positive
direction of corresponding axis; if the outward normal to a side of the element is in the
negative direction of a coordinate axis, the stress component on this side will be considered
positive as it acts in the negative direction of corresponding axis.

Strain: Under the application of external loading, elastic solids deform. The deformation
of a body may be expressed by changes in lengths and angles of the parts. The change per
unit length of fibers oriented in the n-direction, is defined as the normal strain, denoted by
the letter ¢,; the change in angle between two originally orthogonal directions i and j is
defined as the shear strain by the letter y;, which is often referred to as the engineering
shear strain. Normal strain is positive if fibers increase in length and shear strain is positive if
the right angle between the positive directions of the two axes decreases. The nine quantities
€3 Eys Exs Vaes Yeys Yo Yms Yw and ¥, are called the components of strain at a point. The
six shearing strains are mutually equal in pairs, L e s Yoy =Vus Ve =Ves Y= 7Vexs

Displacement: The change of position at any point of a body. The displacement vector is often
expressed by its projections on the x, y and z axes in rectangular coordinates, denoted by u, v and
w, respectively. These three projections are called the displacement components at a point.

1. 1.3 Basic assumptions in theory of elasticity

(1) The body is continuous, i.e. , the whole volume of the body is filled with continuous
matter, without any void. Only under this assumption, can the physical quantities in the
body, such as stresses, strains and displacements, be continuously distributed and thereby
expressed by continuous functions.

(2) The body is perfectly elastic, i.e., the original configuration of the body is
recovered after unload, and furthermore, the body obeys Hooke’s Law which shows the
linear relations between stress and strain. Under this assumption, the elastic constants will
be independent of the magnitudes of stresses or strains.

(3) The body is homogeneous, i. e. , the elastic properties are the same throughout the
body. Thus, the elastic constants will be independent of the location in the body. Under this
assumption, the differential equations with constant coefficients are obtained, and we may
analyze an elementary volume isolated from the body and then apply the results of analysis to
the entire body.
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(4) The body is isotropic, i. e. » the elastic properties are the same in all directions. Thus, the
elastic constants will be independent of the orientation of coordinate axes. Under this assumption,
the material property can be completely determined by two independent. constants,

(5) The body undergoes small deformation, i. e. , the displacements of the body are very small
in comparison with its original dimensions, and the strain components are much smaller than
unity. Thus, when we formulate the equilibrium equations relevant to the deformed state, we may
use the lengths and angles of the body before deformation. In addition, we may neglect the
squares and products of the strains to linearize the strain-displacement relations.

These assumptions are necessary to simplify the governing equations in elasticity for

their easier solutions.
1.2 Key Points

Definition and sign convention for body force, surface force, stress, strain and

displacement.

Problems
1-1. Fill in the blanks.
(1) The theory of elasticity deals with the and in elastic solids
produced by external forces or changes in temperature.
(2) The dimension of the body force component is ; The dimension of the
surface force component is ; The dimension of the stress component is :
(3) That the body is homogeneous means are the same throughout the body.

1 -2. Choose the right one from the four choices.

(1) The shearing strain ¥ in Fig.1 — 1 can be

denoted as ;
A Yy B. ¥
C. 7. D. ¥
(2) can be considered as isotropic material.
A. Wood B. Bamboo
C. Concrete D. Sandwich plate



1 - 3. Give some examples of homogeneous anisotropic body, nonhomogeneous isotropic

body, and nonhomogeneous anisotropic body.

1 -4. Show the positive directions of body forces and surface forces for the body shown

in Fig. 1 - 2.

1-5. Show the positive directions of normal and shear stresses on the element in Fig. 1 - 3.

1-6. Determine the sign of the shear stress shown in Fig. 1 — 4 according to the sign

conventions in Mechanics of Materials and in Elasticity respectively.

0(2) £ 0(z) x
y y
Fig.1-2
o) * 0o(z) %

T2

I
Ty

¥ y

Fig.1-3 Fig.1-4



Chapter 2
Theory of Plane Problems

Basic Contents and Key Points

2.1 Basic Contents

2.1.1 Definition of two kinds of plane problems

(1) Plane stress

If a thin plate is loaded by forces applied at the boundary, parallel to the plane of the plate
and distributed uniformly over the thickness, as shown in Fig.2 — 1, the stress components
0.» T=and 7. are zero on both faces of the plate. It may be assumed, tentatively, that they are
zero within the plate. The state of stress is then specified by 6., o,and z,, only which are

independent of the z coordinate. This is called a state of plane stress in the xy plane.

| / IR
AN i

(2) Plane strain
If an infinitely long prismatic body is loaded by body forces and surface forces on the

lateral surface, and these forces are parallel to the cross sections of the body and do not vary
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along the axial direction, then the displacement component in
the axial direction vanishes and the displacement components % 0] 5
in the cross sections are independent of the axial = coordi-
nate. In this case, the strain components e., ¥, and Y. are zero

and the state of strain is specified by ¢, , e,and 7., only. This de-

formation is referred to as a state of plane strain in the zy plane.

2.1.2 Governing equations Fig. 2~ 2
Differential equations of equilibrium, geometrical equations

and physical equations are the governing elasticity equations.
(1) Differential equations of equilibrium

do: | Iy

dr + dy TE=0
Py | I |
dy dr T£=0
(2) Geometrical equations (also called strain-displacement relations)
_u __w o _w M
€, T ’ €y ay ’ y T ay.
Compatibility equation
e, | Iy IV
2 + 20 ’
dy dr dx dy

(3) Physical equations (also called stress-strain relations or Hooke’s Law or constitutive

equations)

5_,2%(0, —poy)

1
eyzf(a_v—;w,) .

for plane stress problems, and

€= 1 _E/‘Z (o,, ] ﬁﬂa.\. )
eyzl—E#— (6"'—1 'u‘ua,,) )
20 +w
xy E Tay

for plane strain problems.



(If we replace E by & 5 and p by I_/i— in the physical equations for plane stress problems,
7

1=p
the physical equations for plane strain problems are obtained. )

Notation:

The compatibility relations ensure that the displacements are continuous and single-valued and
are necessary when the strains are arbitrarily specified.

If, however, the displacements are included in the problem formulation, the solution
normally generates single - valued displacements and strain compatibility is automatically
satisfied. Thus, in discussing the governing equations of elasticity, the compatibility relations are
normally set aside, to be used only with the stress formulation.

Therefore, the field equations for plane problems refers to the eight relations including two
equilibrium relations, three strain-displacement relations and three stress-strain relations. These field
equations involve eight unknowns including two displacements, three strains and three
stresses. Therefore, the number of equations matches the number of unknowns to be determined.

2.1.3 Stress at a point

If the stress components at a point P are known as ¢, gyand z,,, the direction cosines
of the outward normal to the plane passing through this point is denoted by (/. m), then we
can obtain

(1) The traction (p,, p,) at point P on this plane

p-=lo.tmry, p,=mo,+lr,.

(2) The normal stress and shearing stress (o,, 7,) at point P on this plane

on=lo,+m’e,+2lmry, t.=Ilm(o,—0,)+(E—m*)r,.

(3) The principal stress (o1, o) at point P

M e L R

01 Ox

5 .
or tan @ = ————, where o; (i=1, 2)

The principal stress directions: tan a; = =
ay o1 r

denotes the angle between ¢; and x axis.

(4) The maximum and minimum values of normal stress and shearing stress (if 51 =0,)

o1 02 _ 01 02

Omax — 01 » Omin — 02y Tmax 2 ’ Tmin — 2 ’

the maximum or minimum shearing stress acts on the plane bisecting the angle between the
two principal stresses.

2.1.4 Boundary conditions

The solutions of the above field equations require appropriate boundary conditions on the

7



body under study. The three typical boundary conditions are
(1) displacement boundary conditions
(w,=uls), (v),=v(s),

where u(s) and 9 (s) are prescribed displacement.
(2) traction boundary conditions
U, +mry ) =Ff.(s)
(moy+lry) = f,(s) }’
where f.(s) and fy(s) are prescribed tractions.

(3) mixed boundary conditions
Two cases of mixed boundary conditions are often dealt with.
(a) Tractions are specified on some portion of the boundary and

displacements are given on the remaining portion of the boundary

) B (o, +mry) =f.())

(W, =uls), (v),=0v(s),

o

(moy+lry )., =F (s (

(b) A displacement and a traction are specified in two different
orthogonal directions at the same boundary point
(u) ,=o=0, (I‘A,y ) z=0=0.

Thereby the three fundamental boundary - value problems are

y

classified in the theory of elasticity, including traction boundary-value
problem, displacement boundary-value problem and mixed boundary-value problem.

2.1.5 Principle of superposition

The principle of superposition applies to any problem that is governed by linear equations.

Under the assumption of small deformations and linear elastic constitutive behavior, all
the elasticity field equations are linear. Furthermore, the usual boundary conditions are also
linear. Thus the principle of superposition can be applied.

The general statement of the principle can be expressed as follows:

For a given problem, if the state {q;’, ej’, ;" } is a solution to the fundamental

elasticity equations with prescribed body forces £ and surface tractions f{", and the state

{ SZ) $2)

(2)
O; v & i

i

, u.”} is a solution to the fundamental equations with prescribed body forces f
and surface tractions f;” , then the state {5} +0o} s €, +e; » u;” +u”} will be a solution

to the problem with body forces £+ ¥ and surface tractions f + /.



2.1.6 Saint Venant’s Principle

Saint Venant’s Principle can be stated as: the stress, strain, and displacement fields
caused by two different statically equivalent forces distributed on parts of the body far away
from the loading points are approximately the same.

We often encounter difficulties in having all the boundary conditions completely
satisfied. When the pointwise boundary conditions can’t be satisfied exactly or only the
resultants instead of the distribution of surface forces are known on a small part of the boundary,
Saint Venant’s Principle is often used which may be of much help to solve the problem.

2.1.7 Solutions to plane problems in terms of displacements

In the solution of a plane problem in terms of displacements, the displacement components
u(x, y) and v(x, y) are the basic unknowns, and they must satisfy the governing equations
throughout the body, and also satisfy the boundary conditions on the surface of the body.

(1) Equilibrium equations

E Pu  1—pd*u  1+p -
1—/12<912 2 & 2 919y)+f’ =

E (927) 1—#ﬁj+1+# u
1—p* \ 9y* 2 ax? 2 dxdy

(2) Boundary conditions

(for a plane stress problem).

)+£,=0

Displacement boundary conditions
(w,=u(s), (v),=ov(s).

Traction boundary conditions
2 2 2 2)] 7.0
)1=ﬂu>

For a plane strain problem, it is necessary to replace E by = E z and g by —‘u—lu'n

m@

{ (for a plane stress problem).

1fﬂz[’"(g;+” ax)+z—2/f(§;+

equilibrium equations and traction boundary conditions.

2.1.8 Solutions to plane problems in terms of stresses

In the solution of a plane problem in terms of stresses, the stress components must
satisfy the differential equations of equilibrium

D

Iy _
+T+f_,—0

&b'v

S fy=0



and the compatibility equation

V(g t0a,)=—(14w) ( ; sz ) for plane stress problems, or

3 _ 1 If . E)fv ’ )
V*(s,ta,) 1, *#( (71 Y ) for plane strain problems.

Besides, they must satisfy the traction boundary conditions.

It is found that the compatibility equation is a necessary and sufficient condition for con-
tinuous, single-valued displacements only for simply connected regions. That is to say, the
stress components in a simply connected body are determined if they satisfy the differential
equations of equilibrium, the compatibility equation and the traction boundary conditions.
However, for multiply connected domains, compatibility relations provide only necessary but
not sufficient conditions, the single-valued displacement condition should be considered.

The term simply connected refers to regions of space for which all simple closed curves drawn in
the region can be continuously shrunk to a point without going outside the region. Domains not
having this property are called multiply connected.

2.1.9 Stress function

In the case of constant body forces, the stress components can be obtained from the differen-
tial equations of equilibrium

(‘)2 (’)2@
= _j 3 O'_y_ (22" _fvyi T_z:y:‘[ﬁ:_

Oy — P (/)y s

where the function @(Iq v) is known as the Airy stress function for two-dimensional
problems.
The compatibility equation in terms of the stress function becomes
Vip=0.
It can be seen that the entire set of field equations reduces to a biharmonic equation in

terms of this stress function.

2.2 Key Points

1. The similarities and differences between the two kinds of plane problems
2. Governing equations of plane problems in rectangular coordinates

3. Boundary conditions

4. Saint Venant’s Principle and its applications
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