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Preface

In recent years there has been enormous activity in the theory of algebraic
curves. Many long-standing problems have been solved using the general
techniques developed in algebraic geometry during the 1950’s and 1960’s.
Additionally, unexpected and deep connections between algebraic curves
and differential equations have been uncovered, and these in turn shed
light on other classical problems in curve theory. It seems fair to say that the
theory of algebraic curves looks completely different now from how it
appeared 15 years ago; in particular, our current state of knowledge repre-
sents a significant advance beyond the legacy left by the classical geometers
such as Noether, Castelnuovo, Enriques, and Severi.

These books give a presentation of one of the central areas of this recent
activity ; namely, the study of linear series on both a fixed curve (Volume I)
and on a variable curve (Volume II). Our goal is to give a comprehensive
and self-contained account of the extrinsic geometry of algebraic curves,
which in our opinion constitutes the main geometric core of the recent
advances in curve theory. Along the way we shall, of course, discuss appli-
cations of the theory of linear series to a number of classical topics (e.g., the
geometry of the Riemann theta divisor) as well as to some of the current
research (e.g., the Kodaira dimension of the moduli space of curves).

A brief description of the contents of the various chapters is given in the
Guide for the Reader. Here we remark that these volumes are written in the
spirit of the classical treatises on the geometry of curves, such as Enriques-
Chisini, rather than in the style of the theory of compact Riemann surfaces,
or of the theory of algebraic functions of one variable. Of course, we hope
that we have made our subject understandable and attractive to interested
mathematicians who have studied, in whatever manner, the basics of curve
theory and who have some familiarity with the terminology of modern
algebraic geometry.

We now would like to say a few words about that material which is not
included. Naturally, moduli of curves play an essential role in the geometry
of algebraic curves, and we have attempted to give a useful and concrete
discussion of those aspects of the theory of moduli that enter into our work.
However, we do not give a general account of moduli of curves, and we say
nothing about the theory of Teichmiiller spaces. Secondly, it is obvious that
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theory of abelian varieties and theta functions is closely intertwined with
algebraic curve theory, and we have also tried to give a self-contained
presentation of those aspects that are directly relevant to our work, there
being no pretense to discuss the general theory of abelian varieties and
theta functions. Thirdly, again the general theory of algebraic varieties
clearly underlies this study ; we have attempted to utilize the general methods
in a concrete and practical manner, while having nothing to add to the
theory beyond the satisfaction of seeing how it applies to specific geometric
problems. Finally, arithmetical questions, as well as the recent beautiful
connections between algebraic curves and differential equations including
the ramifications with the Schottky problem, are not discussed.

These books are dedicated to Aldo Andreotti. He was a man of tremendous
mathematical insight and personal wisdom, and it is fair to say that
Andreotti’s view of our subject as it appears, for example, in his classic paper
“On a theorem of Torelli,” set the tone for our view of the theory of algebraic
curves. Moreover, his influence on the four of us, both individually and
collectively, was enormous.

It is a pleasure to acknowledge the help we have received from numerous
colleagues. Specifically, we would like to thank Corrado De Concini, David
Eisenbud, Bill Fulton, Mark Green, Steve Kleiman, and Edoardo Sernesi
for many valuable comments and suggestions. We would also like to express
our appreciation to Roy Smith and Harsh Pittie, who organized a conference
on Brill-Noether theory in February, 1979 at Athens, Georgia, the notes of
which formed the earliest (and by now totally unrecognizable) version of
this work.

Also, it is a pleasure to thank Steve Diaz, Ed Griffin, and Francesco
Scattone for excellent proofreading.

Finally, our warmest appreciation goes to Laura Schlesinger, Carol
Ferreira, and Kathy Jacques for skillfully typing the various successive
versions of the manuscript.



Guide for the Reader

This book is not an introduction to the theory of algebraic curves. Rather, it
addresses itself to those who have mastered the basics of curve theory and
wish to venture beyond them into more recently explored ground. However,
we felt that it would be useful to provide the reader with a condensed account
of elementary curve theory that would serve the dual purpose of establishing
our viewpoint and notation, and furnish a handy reference for those results
which are more frequently used in the main body of our work. This is done
in the first chapter; quite naturally, few proofs are given in full or even
sketched. One notable exception is provided by the theorem of Riemann,
describing the theta divisor of the Jacobian of a curve of genus g as a translate
of the image under the Abel-Jacobi map of the (g — 1)-fold symmetric
product of the curve.

The reader is assumed to have a working knowledge of basic algebraic
geometry such as is given, for example, in the first chapter of Hartshorne’s
book Algebraic Geometry. Occasionally, however, we have been com-
pelled to make use of relatively more advanced results, such as the theory
of base change or the Grothendieck-Riemann-Roch theorem. Our policy,
in this situation, has been to give complete statements and adequate refer-
ences to the existing literature when the results are first used. The main
exception to this rule is provided by Chapter II, which contains a down-to-
earth and utilitarian presentation, with complete proofs, of the first and
second fundamental theorems of invariant theory for the general linear
group, the local structure of determinantal varieties, and their global
enumerative properties such as Porteous’ formula. The main reason for this
exception is, of course, that the varieties of special divisors, which form one
of the main objects of study in this book, have a natural determinantal
structure and many of their properties are essentially direct consequences
of general facts about determinant varieties. We also felt that most readers
would prefer a unified account of the results rather than a sequence of
references to scattered sources in the literature.

The first two chapters are thus of a preliminary nature, and most readers
will probably want to use them primarily for reference purposes. The main
theme of the book, that is, the study of special divisors and the extrinsic
geometry of curves, is introduced in Chapter III. Here will be found, beside
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elementary facts such as Clifford’s theorem (which are discussed here and
not in Chapter I simply because they are close in nature to some of the results
that will be encountered in later chapters), Castelnuovo’s description of
extremal curves, Noether’s theorem, and the theorems of Enriques-Babbage
and Petri on the canonical ideal.

Chapter IV is of a foundational nature. In it the varieties of special divisors
and linear series on a fixed curve—the main characters of this book—are
defined, and the functors they represent are identified. This is where the
results of Chapter II are first applied in a systematic way. Although con-
taining no major results of independent interest, except for Martens’
improvement of Clifford’s theorem and its subsequent refinement by
Mumford, this chapter is, in a sense, the cornerstone on which most of the
later chapters rest.

In Chapter V the main theorems of Brill-Noether theory are stated and
illustrated by means of examples drawn from low-genus cases. In fact most
of the theorems are proved by ad hoc arguments, for genus up to six.

Chapter VI is probably the most geometric in nature and collects many of
the central results about the geometry of the theta divisor of a Jacobian.
The main topics touched upon are Riemann’s singularity theorem and its
generalization by Kempf, Andreotti’s proof of the Torelli theorem for curves,
and Andreotti and Mayer’s approach to the Schottky problem via the heat
equation for the theta function.

Chapter VII contains the proofs of some of the results stated in Chapter V,
notably those of the existence and connectedness theorems, and of the
enumerative formulas for the classes of the varieties of special linear series
and divisors. The enumerative geometry of these varieties, and related ones,
is further investigated in the eighth and final chapter of this volume.

The second volume will contain an exposition of the fundamentals of
deformation theory and of the main properties of the moduli space of curves,
the proof of the remaining results of Brill-Noether theory, a presentation
of the basic properties of the varieties of special linear series on a moving
curve with special attention to series of dimension one and two (that is, to
Hurwitz spaces and varieties of plane curves), and a proof of the theorem that
the moduli space of curves of sufficiently high genus is of general type.
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Chapter I

Preliminaries

This book will be concerned with geometric properties of algebraic curves.
Our central problem is to study the various projective manifestations of a
given abstract curve. In this chapter we shall collect various definitions,
notations, and background facts that are required for our work.

§1. Divisors and Line Bundles on Curves

By curve we shall mean a complete reduced algebraic curve over C; it may be
singular or reducible. When speaking of a smooth curve, we shall always
implicitly assume it to be irreducible. Sometimes, when no confusion is
possible we sha]l drop the adjective “smooth”; this will only be done in
sections where exclusively smooth curves are being considered.

We shall assume known the basic properties of sheaves and line bundles
on algebraic varieties and analytic spaces, and shall make the usual identi-
fication of invertible sheaves with line bundles and of locally free sheaves with
vector bundles. When tensoring with line bundles we shall often drop the
tensor product symbol. If & is a sheaf of C-vector spaces over a topological
space V, we shall set, as customary

(v, ) = dime H(V, #),
WF) = ¥ (- D)V, #).

The basic invariant of a curve C is its genus. To be more precise, we shall use
the words arithmetic genus of C to denote the integer

pC) =1 — x(Oc).

Of course, when C is connected, the arithmetic genus of C equals h'(C, O).
On the other hand, when C is irreducible, we shall denote by g(C) its geo-
metric genus, which is defined to be the (arithmetic) genus of its normalization.
In this book we shall usually talk about the genus of a curve without further
specification; hopefully, it will always be clear from the context which genus
we are referring to. A very basic but non-elementary fact, which can be proved



