O'REILLY"

JavaScript#i& (genkg)

¥ B K'F HARit Dr. Axel Rauschmayer %

JavaScript#ig wam
Speaking JavaScript

Axel Rauschmayer &

Beijing - Cambridge - Farnham - Koln - Sebastopol - Tokyo [K@N{=/|MM @

O’Reilly Media, Inc & A & d X 5 3 At i iR

RN REKFHARA

BB ER 4% B (CIP)# 7

JavaScript Ffrift: 3 30/ (3255 iE B (Rauschmayer,A.)
. REAR. R KR R, 20152

+544 JF3C : Speaking JavaScript

ISBN 978 - 7-5641- 5380 -2

[.OF 1T.0%- II.DIAVA EES—FF
it V. OTP3I2

rh [A [4545 CIP B 4% 7 (2014) 45 294379 5

VLB IR EEALE TR BT
5 :10- 2014 - 165 =

© 2014 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2015. Authorized reprint of the original English edition, 2014 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form. -

-3 LR W& W O'Reilly Media, Inc. & 2014,

LR ARy K G MRAL AR 2015, b F Ep R 09 B R Ao 4K R 13 3] B AR Ao 4 E ARG P &
~— O'Reilly Media, Inc.#9% 7T,

AT AT RAF 35 @ T A B AT D Ao o B RF AT H X T4,

JavaScript #7iE GZEN IO

MR AT : A5HE A Hh Rk

Moo hk: EERPUMBE 2 1B 28 - 210096
MR A g

™ ik : http//www.seupress.com

HL IR : press@seupress.com

ED Rl M T RS = BRI A R
A 787 2K X 980 4 16 74
k. 2875

. 563 T

W: 20154E 2 A4 1 iR

W 20154F 2 A% 1 IREPR

5 : ISBN 978~ 7- 5641 - 5389 2
#fr: 84.00 7T

MMETFNEH

AP AT B T B e S TR R . S (FE D) 025- 83791830

Praise for Speaking JavaScript

“Alot of people think JavaScript is simple and in many cases it is. But in its elegant simplicity
lies a deeper functionality that if leveraged properly, can produce amazing results. Axel’s
ability to distill this into an approachable reference will certainly help both aspiring and
experienced developers achieve a better understanding of the language.”

—Rey Bango

Advocate for cross-browser development, proponent of the

open web, and lover of the JavaScript programming language

“Axel’s writing style is succinct, to the point, yet at the same time extremely detailed. The
many code examples make even the most complex topics in the book easy to understand.”

—Mathias Bynens
Belgian web standards enthusiast who likes HTML, CSS,
JavaScript, Unicode, performance, and security

"Speaking JavaScript isa modern, up to date book perfectly aimed at the existing experienced
programmer ready to take a deep dive into JavaScript. Without wasting time on laborious
explanations, Dr. Rauschmayer quickly cuts to the core of JavaScript and its various concepts
and gets developers up to speed quickly with a language that seems intent on taking over
the developer world.”

—Peter Cooper
Publisher, entrepreneur, and co-organizer of
Fluent Conference

“If you have enjoyed Axel’s blog, then you’ll love this book. His book is filled with tons of
bite-sized code snippets to aid in the learning process. If you want to dive deep and
understand the ins and outs of JavaScript, then I highly recommend this book.”

—Elijah Manor
Christian, family man, and front end web developer for
Dave Ramsey; enjoys speaking, blogging, and tweeting

“This book opens the door into the modern JavaScript community with just enough
background and plenty of in-depth introduction to make it seem like you’ve been with the
community from the start.”

—Mitch Pronschinske
DZone Editor

“After following Dr. Axel Rauschmayer’s work for a few years, I was delighted to learn that
he was writing a book to share his deep expertise of JavaScript with those getting started
with the language. I've read many JavaScript books, but none that show the attention to

detail and comprehensiveness of Speaking]S, without being boring or overwhelming. I'll
be recommending this book for years to come.”

—Guillermo Rauch

Speaker, creator of socket.io, mongoose, early Node.js
contributor, author of “Smashing Node.js”, founder of
LearnBoost/Cloudup (acq. by Wordpress in 2013), and
Open Academy mentor

Preface

Due to its prevalence on the Web and other factors, JavaScript has become hard to avoid.
That doesn’t mean that it is well liked, though. With this book, 'm hoping to convince
you that, while you do have to accept a fair amount of quirks when using it, JavaScript
is a decent language that makes you very productive and can be fun to program in.

Even though I have followed its development since its birth, it took me a long time to
warm up to JavaScript. However, when I finally did, it turned out that my prior expe-
rience had already prepared me well, because I had worked with Scheme, Java (including
GWT), Python, Perl, and Self (all of which have influenced JavaScript).

In 2010, I became aware of Node.js, which gave me hope that I'd eventually be able to
use JavaScript on both server and client. As a consequence, I switched to JavaScript as
my primary programming language. While learning it, I started writing a book chron-
icling my discoveries. This is the book you are currently reading. On my blog, I published
parts of the book and other material on JavaScript. That helped me in several ways: the
positive reaction encouraged me to keep going and made writing this book less lonely;
comments to blog posts gave me additional information and tips (as acknowledged
everywhere in this book); and it made people aware of my work, which eventually led
to O’Reilly publishing this book.

Therefore, this book has been over three years in the making. It has profited from this
long gestation period, during which I continually refined its contents. I'm glad that the
book is finally finished and hope that people will find it useful for learning JavaScript.
O'Reilly has agreed to make it available to be read online, for free, which should help
make it accessible to a broad audience.

What You Need to Know About This Book

Is this book for you? The following items can help you determine that:

xi

Who this book is for
This book has been written for programmers, by a programmer. So, in order to
understand it, you should already know object-oriented programming, for exam-

ple, viaa mainstream programminglanguage such as Java, PHP, C++, Python, Ruby,
Objective-C, C#, or Perl.

Thus, the booK’s target audience is programmers who want to learn JavaScript
quickly and properly, and JavaScript programmers who want to deepen their skills
and/or look up specific topics.

What’s not covered
This book focuses on the JavaScript language proper. For example, you won't find
information on programming web browsers (DOM, asynchronous programming,
etc.). However, Chapter 33 points to relevant material.

How this book is organized
This book is divided into four parts, but the main two are:

e JavaScript Quick Start
o JavaScript in Depth

These parts are completely independent! You can treat them as if they were separate
books: the former is more like a guide, the latter is more like a reference. “The Four
Parts of This Book” on page xii tells you more about the structure of this book.

What JavaScript version this book uses
This book teaches ECMAScript 5, the current version of JavaScript that is supported
by all modern engines. If you have to work with, say, older web browsers, then
Chapter 25 explains what features are exclusive to ECMAScript 5.

Tips for Reading This Book

The most important tip for learning JavaScript is don’t get bogged down by the details.
Yes, there are many details when it comes to the language, and this book covers most
of them. But there is also a relatively simple and elegant “big picture” that I will point
out to you.

The Four Parts of This Book

This book is organized into four parts:

Part I, JavaScript Quick Start
This part teaches you “Basic JavaScript,” a subset of JavaScript that is as small as
possible while still enabling you to be productive. The part stands on its own; it
doesn’t depend on other parts and no other parts depend on it.

xii | Preface

Part II, Background

This part puts JavaScript in historical and technical context: When, why, and how
was it created? How is it related to other programming languages? What were the
important steps that got us to where we are today?

Part I11, JavaScript in Depth
This part is more of a reference: look for a topic that you are interested in, jump in,
and explore. Many short examples should prevent things from becoming too dry.

Part 1V, Tips, Tools, and Libraries

This part gives tips for using JavaScript: best practices, advanced techniques, and
learning resources. It also describes a few important tools and libraries.

JavaScript Command Lines

While reading this book, you may want to have a command line ready. That allows you
to try out code interactively. The most popular choices are:

Node.js (http://nodejs.org)
Node.js comes with an interactive command line. You start it by calling the shell
command node.

Browsers
All major browsers have consoles for entering JavaScript that is evaluated in the

context of the current page. Simply search online for the name of your browser and
“console”

Notational Conventions

The following notational conventions are used throughout the book.

Describing syntax
Question marks (?) are used to mark optional parameters. For example:
parselnt(str, radix?)

French quotation marks (guillemets) denote metacode. You can think of such metacode
as blanks, to be filled in by actual code. For example:

try {
«try_statements»
i
“White” square brackets mark optional syntactic elements. For example:
break [«label»]

In JavaScript comments, I sometimes use backticks to distinguish JavaScript from
English:

Preface | xiii

foo(x, y); // calling function ‘foo' with parameters “x* and ‘y*

Referring to methods
I refer to built-in methods via their full path:
«Constructor».prototype.«methodName»()

For example, Array.prototype. join() refers to the array method join(); that is, Java-
Script stores the methods of Array instances in the object Array . prototype. The reason
for this is explained in “Layer 3: Constructors—Factories for Instances” on page 231.

Command-line interaction

Whenever I introduce a new concept, I often illustrate it via an interaction in a JavaScript
command line. This looks as follows:

>3+ 4
7

The text after the greater-than character is the input, typed by a human. Everything else
is output by the JavaScript engine. Additionally, I use the method console.log() to
print data to the console, especially in (non-command-line) source code:

var x = 3;
X++;
console.log(x); // 4

Tips, notes, and warnings

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xiv | Preface

Quickly Finding Documentation

While you can obviously use this book as a reference, sometimes looking up information
online is quicker. One resource I recommend is the Mozilla Developer Network (https://
developer.mozilla.org/en-US/) (MDN). You can search the Web to find documentation

on MDN. For example, the following web search finds the documentation for the push()
method of arrays:

mdn array push

Safari® Books Online

o) Safari Books Online is an on-demand digital library that
Safa rl delivers expert content in both book and video form from

Bocksonline the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/speaking-js.

Preface | xv

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank the following people, all of whom helped make this book possible.

Preparing for JavaScript

The following people laid the foundations for my understanding of JavaScript (in chro-
nological order):

o Prof. Francois Bry, Sven Panne, and Tim Geisler (Scheme)
« Prof. Don Batory (technical writing, programming language design)

 Prof. Martin Wirsing, Alexander Knapp, Matthias Holzl, Hubert Baumeister, and
various other former colleagues at the Institute for Informatics of the University of
Munich (formal methods, various software engineering topics)

Help with JavaScript

Participants of the es-discuss mailing list
Their answers helped me understand the design of JavaScript. I am deeply thankful

for their patience and tirelessness. Four people stood out: Brendan Eich, Allen
Wirfs-Brock, Mark Miller, and David Herman.

Readers of my blog 2ality (http://www.2ality.com)
I published bits and pieces of this book on my blog and got an incredible amount
of useful feedback. A few names among many: Ben Alman, Brandon Benvie, Ma-
thias Bynens, Andrea Giammarchi, Matthias Reuter, and Rick Waldron.

More sources are acknowledged in the chapters.

xvi | Preface

Reviewers
I am much obliged to the following people who reviewed this book. They provided

important feedback and corrections. In alphabetical order:

Mathias Bynens
Raymond Camden

Cody Lindley

Shelley Powers

Andreas Schroeder

Alex Stangl

Béla Varga

Edward Yue Shung Wong

Preface

xvii

Table of Contents

[(] [xi

Partl. JavaScript Quick Start

T BASICIAVASTHPL. <a o0 iv o 5s o wiaim v wonw nis wioim s womsm o200 mis 000 S0 030 556 e wios 3
Background 3
Syntax 4
Variables and Assignment 6
Values 7
Booleans 12
Numbers 14
Operators 15
Strings 15
Statements 16
Functions 18
Exception Handling 21
Strict Mode 21
Variable Scoping and Closures 22
Objects and Constructors 24
Arrays 28
Regular Expressions 31
Math 31
Other Functionality of the Standard Library 32

Partll. Background

2. Why ISP os s s snismunn e wns smiis waw smn snssusmssen swn by 5a sivss 35
Is JavaScript Freely Available? 35
Is JavaScript Elegant? 35

Is JavaScript Useful? 36
Does JavaScript Have Good Tools? 37
Is JavaScript Fast Enough? 37
Is JavaScript Widely Used? 38
Does JavaScript Have a Future? 38
Conclusion 38
3. TheNature of JavaScript.oovvriirinie it iiieeiiierrieernnes 39
Quirks and Unorthodox Features 40
Elegant Parts 40
Influences 41
4. How JavaSaript Wasrented. . s cocvvmm vanmin s s oim sosin 400 osnssivsin saon w80 43
5. ‘Standardization: ECMASTIDE. . «: +vs sn comisn sie snn ensmimisie s o snwnes siamsin s wes 45
6. Histotical JavaScript MUSTONES, cos vvusmsss s sws svn wains esi s wais smmainwas 47
Partlll. JavaScriptin Depth
7: JOVASCHPLE SYNEEL. . o o.cx wrms wsus wmpmin wivie s wieis amws i 0k Biard Sissns bt sinss wims s 53
An Overview of the Syntax 53
Comments 54
Expressions Versus Statements 54
Control Flow Statements and Blocks 57
Rules for Using Semicolons 57
Legal Identifiers 60
Invoking Methods on Number Literals 62
Strict Mode 62
B WOMES. <o sua 658 o045 s s d0 T bk das wms wo wammais St A B BB AT e b4 67
JavaScript’s Type System 67
Primitive Values Versus Objects 69
Primitive Values 69
Objects 70
undefined and null 71
Wrapper Objects for Primitives 75
Type Coercion 77
9, DPOTAUOTS: i 5ist dmws i ok e din webin mem wmommrvs wims e s o sk ol Wt e 6 A G U 81
Operators and Objects 81
Assignment Operators 81
Equality Operators: === Versus == 83

iv

| Table of Contents

10.

1.

12.

13.

Ordering Operators

The Plus Operator (+)

Operators for Booleans and Numbers
Special Operators

Categorizing Values via typeof and instanceof

Object Operators

Booleans
Converting to Boolean

Logical Operators

Equality Operators, Ordering Operators
The Function Boolean

NUMDEES s 555 555550 3008 36005 3155 7% 51330 0308 Bk 816 £ 418 51276 #1658 Shass b1 s eve siopsrarass Sface sl acs

Number Literals

Converting to Number

Special Number Values

The Internal Representation of Numbers
Handling Rounding Errors
Integers in JavaScript
Converting to Integer
Arithmetic Operators

Bitwise Operators

The Function Number

Number Constructor Properties
Number Prototype Methods
Functions for Numbers

Sources for This Chapter

BUIGS, cvnr 00 s sssmianinsosssasnsvesrs v sissdnb srd BB ERESN ses sResasos s

String Literals

Escaping in String Literals
Character Access

Converting to String
Comparing Strings
Concatenating Strings

The Function String

String Constructor Method
String Instance Property length
String Prototype Methods

S AT OIINOINES i ciis w1076 o 5ias i s 95308 545 o 10 Wy i Wi, & 5.5 526 Bieoss avels i, 8160w Wi s

Declaring and Assigning Variables

87
88
89
89
92
95

97
97
99
102
102

103
103
104
106
111
112
114
117
122
124
127
128
128
131
132

133
133
134
135
135
136
137
138
138
139
139

145
145

Table of Contents

| v

14.

15.

16.

17.

The Bodies of Loops and Conditionals
Loops

Conditionals

The with Statement

The debugger Statement

ExceptionHandling.............covvviiiiiiiiiii i

What Is Exception Handling?

Exception Handling in JavaScript

Error Constructors

Stack Traces

Implementing Your Own Error Constructor

FUNCHIONS. o o vt eieitt it tiiie et eieeneenesensensnssnsencnsnnss

The Three Roles of Functions in JavaScript
Terminology: “Parameter” Versus “Argument”
Defining Functions

Hoisting

The Name of a Function

Which Is Better: A Function Declaration or a Function Expression?
More Control over Function Calls: call(), apply(), and bind()

Handling Missing or Extra Parameters
Named Parameters

Variables: Scopes, Environments, and Closures.c....... s

Declaring a Variable

Background: Static Versus Dynamic

Background: The Scope of a Variable

Variables Are Function-Scoped

Variable Declarations Are Hoisted

Introducing a New Scope via an IIFE

Global Variables

The Global Object

Environments: Managing Variables

Closures: Functions Stay Connected to Their Birth Scopes

Objects and INhentanee. . . . s scucscinsnsmem s sosimsoes sanesams s

Layer 1: Single Objects

Converting Any Value to an Object

this as an Implicit Parameter of Functions and Methods
Layer 2: The Prototype Relationship Between Objects
Iteration and Detection of Properties

Best Practices: Iterating over Own Properties

145
146
150
153
155

157
157
158
161
162
163

165
165
166
166
168
169
169
170
171
176

179
179
179
180
181
182
183
186
188
190
193

197
197
203
204
211
217
220

vi

| Table of Contents

18.

19.

20.

Accessors (Getters and Setters)

Property Attributes and Property Descriptors
Protecting Objects

Layer 3: Constructors—Factories for Instances
Data in Prototype Properties

Keeping Data Private

Layer 4: Inheritance Between Constructors
Methods of All Objects

Generic Methods: Borrowing Methods from Prototypes
Pitfalls: Using an Object as a Map

Cheat Sheet: Working with Objects

Overview

Creating Arrays

Array Indices

length

Holes in Arrays

Array Constructor Method

Array Prototype Methods

Adding and Removing Elements (Destructive)
Sorting and Reversing Elements (Destructive)
Concatenating, Slicing, Joining (Nondestructive)
Searching for Values (Nondestructive)
Iteration (Nondestructive)

Pitfall: Array-Like Objects

Best Practices: Iterating over Arrays

Regular EXPressions.oeuuuieeeeeiniiiieeeriiiieeeriiieeernnneenes
Regular Expression Syntax

Unicode and Regular Expressions

Creating a Regular Expression

RegExp.prototype.test: Is There a Match?

String.prototype.search: At What Index Is There a Match?
RegExp.prototype.exec: Capture Groups

String.prototype.match: Capture Groups or Return All Matching Substrings
String.prototype.replace: Search and Replace

Problems with the Flag /g

Tips and Tricks

Regular Expression Cheat Sheet

DIATOS: v s 506 6550 s 5 005 0005 50 558 scone wosie anm s s o et o e ovend b 8616 6 v ioe soete mre; o w1 s e precs

The Date Constructor

221
222
229
231
241
244
251
257
260
266
270

273
273
274
276
279
282
285
286
286
287
289
290
291
295
295

297
297
302
302
304
305
305
307
307
309
311
314

317
317

Table of Contents

| vii

