M. J. D. Powell

Approximation
Theory and
Methods

g E

bl

Z LW ¥ &3
www.wpcbj.com.cn




M. J. D. POWELL

John Humphrey Plummer Professor of Applied Numerical Analysis
University of Cambridge

Approximation theory
and methods

% CAMBRIDGE

@' UNIVERSITY PRESS




EHEm&EE (CIP) ¥

BB J7 B = Approximation theory and methods: 23/ (3) #IEL/R
(Powell \ M. J. D. ) 2. —REIA . —Jb: HAEBHRAFILRAF, 2014.9
ISBN 978 -7 —5100 - 8625 -0

1. O& - 1I.0#H- I OEER—BH—EIX N.O0174.41
thE A i CIP BT (2014) 3211071 5

B #: Approximation Theory and Methods

1€ #: M. ]. D. Powell

RoiFE BB

EEHRE: ®E NE

H R F: HAEBLRARAIERAF

B Rl &: =WniEXNFAHRAH

% 17: HAEBHEAFANEAF (JLESRKE 137 5 100010)
BEEIE: 010 -64021602, 010 - 64015659

BFEH: kb@wpcebj. com. en

7 x: 247

Ep k: 15

B &R: 201541 A

REAREiZ:  EF: 01 -2013 -8236

# B: 978-7-5100-8625-0 E O 49.00T




Approximation theory and methods



Approximation Theory and Methods (978-0-521-29514-7) by M. J. D.
Powell, first published by Cambridge University Press 2001

All rights reserved.

This reprint edition for the People’s Republic of China is published
by arrangement with the Press Syndicate of the University of Cam-
bridge, Cambridge, United Kingdom.

© Cambridge University Press & Beijing World Publishing Corpora-
tion 2014 This book is in copyright. No reproduction of any part may
take place without the written permission of Cambridge University
Press or Beijing World Publishing Corporation.

This edition is for sale in the mainland of China only, excluding
Hong Kong SAR, Macao SAR and Taiwan, and may not be bought

for export therefrom.

HRANRPEARCNEREAHE, FEEFE. BRI
TEXEFEHEE. AMEHO,



PREFACE

There are several reasons for studying approximation theory and
methods, ranging from a need to represent functions in computer cal-
culations to an interest in the mathematics of the subject. Although
approximation algorithms are used throughout the sciences and in many
industrial and commercial fields, some of the theory has become highly
specialized and abstract. Work in numerical analysis and in mathematical
software is one of the main links between these two extremes, for its
purpose is to provide computer users with efficient programs for general
approximation calculations, in order that useful advances in the subject
can be applied. This book presents the view of a numerical analyst, who
enjoys the theory, and who is keenly interested in its importance to
practical computer calculations. It is based on a course of twenty-four
lectures, given to third-year mathematics undergraduates at the Uni-
versity of Cambridge. There is really far too much material for such a
course, but it is possible to speak coherently on each chapter for about
one hour, and to include proofs of most of the main theorems. The pre-
requisites are an introduction to linear spaces and operators and an inter-
mediate course on analysis, but complex variable theory is not required.

Spline functions have transformed approximation techniques and
theory during the last fifteen years. Not only are they convenient and
suitable for computer calculations, but also they provide optimal
theoretical solutions to the estimation of functions from limited data.
Therefore seven chapters are given to spline approximations. The classi-
cal theory of best approximations from linear spaces with respect to the
minimax, least squares and L ,-norms is also studied, and algorithms are
described and analysed for the calculation of these approximations.
Interpolation is considered also, and the accuracy of interpolation and
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other linear operators is related to the accuracy of optimal algorithms.
Special attention is given to polynomial functions, and there is one
chapter on rational functions, but, due to the constraints of twenty-four
lectures, the approximation of functions of several variables is not
included. Also there are no computer listings, and little attention is given
to the consequences of the rounding errors of computer arithmetic. All
theorems are proved, and the reader will find that the subject provides a
wide range of techniques of proof. Some material is included in order to
demonstrate these techniques, for example the analysis of the con-
vergence of the exchange algorithm for calculating the best minimax
approximation to a continuous function. Several of the proofs are new. In
particular, the uniform boundedness theorem is established in a way that
does not require any ideas that are more advanced than Cauchy
sequences and completeness. Less functional analysis is used than in
other books on approximation theory, and normally functions are
assumed to be continuous, in order to simplify the presentation. Exercises
are included with each chapter which support and extend the text. All
references to related work are given in an appendix.

It is a pleasure to acknowledge the excellent opportunities I have
received for research and study in the Department of Applied Mathema-
tics and Theoretical Physics at the University of Cambridge since 1976,
and before that at the Atomic Energy Research Establishment, Harwell.
My interest in approximation theory began at Harwell, stimulated by the
enthusiasm of Alan Curtis, and strengthened by Pat Gaffney, who
developed some of the theory that is reported in Chapter 24. I began to
write this book in the summer of 1978 at the University of Victoria,
Canada, and I am grateful for the facilities of their Department of
Mathematics, for the encouragement of Ian Barrodale and Frank
Roberts, and for financial support from grants A5251 and A7143 of the
National Research Council of Canada. At Cambridge David Carter of
King’s College kindly studied drafts of the chapters and offered helpful
comments. The manuscript was typed most expertly by Judy Roberts,
Hazel Felton, Margaret Harrison and Paula Lister. I wish to express
special thanks to Hazel for her assistance and patience when I was
redrafting the text. My wife, Caroline, not only showed sympathetic
understanding at home during the time when I worked long hours to
complete the manuscript, but also she assisted with the figures. This work
is dedicated to Caroline.

Pembroke College, Cambridge M. ). D. POWELL
January 1980
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1

The approximation problem and existence of
best approximations

1.1 Examples of approximation problems

A simple example of an approximation problem is to draw a
straight line that fits the curve shown in Figure 1.1. Alternatively we may
require a straight line fit to the data shown in Figure 1.2, Three possible
fits to the discrete data are shown in Figure 1.3, and it seems that lines B
and C are better than line A. Whether B or C is preferable depends on
our confidence in the highest data point, and to choose between the two
straight lines we require a measure of the quality of the trial approxima-
tions. These examples show the three main ingredients of an approxima-
tion calculation, which are as follows: (1) A function, or some data, or

Figure 1.1. A function to be approximated.




The approximation problem

Figure 1.2. Some data to be approximated.

Figure 1.3. Three straight-line fits to the data of Figure 1.2.
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Approximation in a metric space 3

more generally a member of a set, that is to be approximated. We call it £.
(2) A set, o say, of approximations, which in the case of the given
examples is the set of all straight lines. (3) A means of selecting an
approximation from .

Approximation problems of this type arise frequently. For instance we
may estimate the solution of a differential equation by a function of a
certain simple form that depends on adjustable parameters, where the
measure of goodness of the approximation is a scalar quantity that is
derived from the residual that occurs when the approximating function is
substituted into the differential equation. Another example comes from
the choice of components in electrical eircuits. The function f may be the
required response from the circuit, and the range of available
components gives a set & of attainable responses. We have to approxi-
mate f by a member of &/, and we require a criterion that selects suitable
components. Moreover, in computer calculations of mathematical
functions, the mathematical function is usually approximated by one that
is easy to compute.

Many closely related questions are of interest also. Given f and &, we
may wish to know whether any member of & satisfies a fixed tolerance
condition, and, if suitable approximations exist, we may be willing to
accept any one. It is often useful to develop methods for selecting a
member of & such that the error of the chosen approximation is always
within a certain factor of the least error that can be achieved. It may be
possible to increase the size of o if necessary, for example & may be a
linear space of polynomials of any fixed degree, and we may wish to
predict the improvement in the best approximation that comes from
enlarging & by increasing the degree. At the planning stage of a numeri-
cal method we may know only that f will be a member of a set %, in which
case it is relevant to discover how well any member of B can be
approximated from . Further, given 93, it may be valuable to compare
the suitability of two different sets of approximating functions, &/, and
&,. Numerical methods for the calculation of approximating functions
are required. This book presents much of the basic theory and algorithms
that are relevant to these questions, and the material is selected and
described in a way that is intended to help the reader to develop suitable
techniques for himself.

1.2 Approximation in a metric space
The framework of metric spaces provides a general way of
measuring the goodness of an approximation, because one of the basic
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properties of a metric space is that it has a distance function. Specifically,
the distance function d(x, y) of a metric space 2 is a real-valued function,
that is defined for all pairs of points (x, y) in 9, and that has the following
properties. If x # y, then d(x, y) is positive and isequal tod(y, x). If x = y,
then the value of d(x, y) is zero. The triangle inequality

d(x,y)<d(x,z)+d(z,y) (1.1)
must hold, where x, y and z are any three points in 3.
In most approximation problems there exists a suitable metric space

that contains both f and the set of approximations &. Then it is natural to
decide that ap € & is a better approximation than a, € « if the inequality

d(ao, f)<d(ai, f) (1.2)
is satisfied. We define a* € of to be a best approximation if the condition

d(a*,f)<d(a,f) (1.3)
holds for all a € .

The metric space should be chosen so that it provides a measure of the
error of each trial approximation. For example, in the problem of fitting
the data of Figure 1.2 by a straight line, we approximate a set of points
{(xi, yi);i=1,2,3,4, 5} by a function of the form

p(x)=co+cCx, (1.4)
where ¢, and ¢, are scalar coeflicients. Because we are interested in only
five values of x, the most convenient space is R°. The fact that p(x)
depends on two parameters is not relevant to the choice of metric space.
We measure the goodness of the approximation (1.4) as the distance,
according to the metric we have chosen, from the vector of function
values {p(x)); i=1, 2, 3, 4, 5} to the data values {y;; i =1, 2, 3,4, 5}.

It may be important to know whether or not a best approximation
exists. One reason is that many methods of calculation are derived from

properties that are obtained by a best approximation. The following
theorem shows existence in the case when & is compact.

Theorem 1.1

If &/ is a compact set in a metric space A, then, for every f in &,
there exists an element a* € «, such that condition (1.3) holds for all
acd.

Proof. Let d* be the quantity
d*= inLd(a,f). (1.5)
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If there exists a* in & such that this bound on the distance is achieved,
then there is nothing to prove. Otherwise there is a sequence {a;;i =
1,2,...} of points in & which gives the limit

!irg d(a, f)=d*. (1.6)

By compactness the sequence has at least one limit point in &, a ™ say.
Expression (1.6) and the definition of a* imply that, for any € >0, there
exists an integer k such that the inequalities

d(ay, f)<d*+3e (1.7)
and

d(ax,a’)<3e (1.8)
are obtained. Hence the triangle inequality (1.1) provides the bound

d(a+,f)sd(a+, ak)-b-d(ak, f)
<d*+e. (1.9)

Because ¢ can be arbitrarily small, the distance d(a”,f) is not greater
than d*. Therefore a” is a best approximation. 0

When & is not compact it is easy to find examples to show that best
approximations may not exist. For instance, let B be the Euclidean space
#? and let o be the set of points that are strictly inside the unit circle.

There is no best approximation to any point of 9 that is outside or on the
unit circle.

1.3 Approximation in a normed linear space

The properties of metric spaces are not sufficiently strong for
most of our work, so it is assumed that &/ and f are contained in a normed
linear space, which we call & also when we want to refer to it. The norm is

a real-valued function ||x|| that is defined for all x € 8. Its properties are
such that the function

d(x,y)=llx -yl (1.10)

is suitable as a distance function. Therefore, by letting z be zero in

expression (1.1) and by reversing the sign of y, we may deduce the triangle
inequality

lle + yll < lhell+ 1l yll (1.11)
Moreover, the norm must satisfy the homogeneity condition
IAxli= A fix| (1.12)

for all x € B and for all scalars A.
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The specialization from metric spaces to normed linear spaces does not
exclude any of the approximation problems that we will consider. There-
fore mostly we use the distance function (1.10). It occurs naturally in the
approximation calculations that are of practical interest, and it allows the
existence of a best approximation to be proved when & is a linear space.

Theorem 1.2
If & is a finite-dimensional linear space in a normed linear space

A, then, for every fe %, there exists an element of o/ that is a best
approximation from « to f.

Proof. Let the subset &/, contain the elements of & that satisfy the
condition

llall < 2|l 1. (1.13)

It is compact because it is .a closed and bounded subset of a finite-
dimensional space. It is not empty: for example it contains the zero
element. Therefore, by Theorem 1.1, there is a best approximation from
A, to f which we call a§. By definition the inequality

la —fl=llas -fl,  aesd, (1.14)

holds. Alternatively, if the element a is in & but is not in &, then, because
condition (1.13) is not obtained we have the bound

la —fll=llall - A
>|IA
=|lai —fll, (1.15)

where the last line makes further use of the fact that the zero element is in
#,. Hence expression (1.14) is satisfied for all a in &, which proves that
ad is a best approximation. 0

1.4 The L,-norms
In most of the approximation problems that we consider, f and &/
are in the space €[a b], which is the set of continuous real-valued
functions that are defined on the interval [a, b] of the real line. Occasion-
ally we turn to discrete problems, where f and & are in ", which is the
set of real m-component vectors. Both of these spaces are linear and we
have a choice of norms.
We study the three norms that are used most frequently, namely the
L,-norms in the cases when p =1, 2 and 0. For finite p the L,-norm in



