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Transport in Nanostructures
Second Edition

Providing a much-needed update on the latest experimental research, this
new edition has been thoroughly revised and develops a detailed theoretical
framework for understanding the behavior of mesoscopic devices.

The second edition now contains greater coverage of the quantum Hall effect, in
particular, the fractional quantum Hall effect; one-dimensional structures,
following the growth of research in self-assembled nanowires and nanotubes;
nanoscale electronic devices, due to the evolution of device scaling to nanometer
dimensions in the semiconductor industry; and quantum dots.

The authors combine reviews of the relevant experimental literature with
theoretical understanding and interpretation of phenomena at the nanoscale.
This second edition will be of great interest to graduate students taking courses
in mesoscopic physics or nanoelectronics, and researchers working on
semiconductor nanostructures.
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Preface

The original edition of this book grew out of our somewhat disorganized
attempts to teach the physics and electronics of mesoscopic devices over the
past decade. Fortunately, these evolved into a more consistent approach, and the
book tried to balance experiments and theory in the current, at that time,
understanding of mesoscopic physics. Whenever possible, we attempted to first
introduce the important experimental results in this field followed by the rele-
vant theoretical approaches. The focus of the book was on electronic transport in
nanostructure systems, and therefore by necessity we omitted many important
aspects of nanostructures such as their optical properties, or details of nanos-
tructure fabrication. Due to length considerations, many germane topics related
to transport itself did not receive full coverage, or were referred to only by
reference. Also, due to the enormity of the literature related to this field, we did
not include an exhaustive bibliography of nanostructure transport. Rather, we
tried to refer the interested reader to comprehensive review articles and book
chapters when possible.

The decision to do a second edition of this book was reached only after long
and hard consideration and discussion among the authors. While the first edition
was very successful, the world has changed significantly since its publication.
The second edition would have to be revised extensively and considerable new
material added. A decision to go ahead was made only after welcoming Jon Bird
to the author’s team. Once this was done, we then carefully discussed the revison
and its required redistribution of material among several new chapters. Even so,
the inclusion of this considerable material has meant that a lot of material has
been left out of this second edition, in order to bring it down to a tractable size.
This even included a considerable amount of material that was in the first
edition, but no longer appears. We hope that the reader is not put off by this;
as the first edition was so successful, we anticipate many of the readers will
already have that tome. But, it was essential to include more up-to-date material
and topics while maintaining a rational size for the book. Thus, the decision was
in principle already made for us.

Currently, we still are teaching a two semester graduate sequence (at ASU) on
the material contained in the book. In the first course, which is suitable for first-year
graduate students, the experiments and simpler theory, such as that for tunneling,
edge states, quantum Hall effect, quantum dots, and the Landauer—Biittiker method,
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are introduced. This covers parts of each of the chapters, but does not delve into
the topic of Green’s functions. Rather, the much more difficult treatment of
Green’s functions is left to the second course, which is intended for more
serious-minded doctoral students. Even here, the developments of the zero-
temperature Green’s functions now in Chapter 3, followed by the Matsubara
Green’s functions in Chapter 8, and the nonequilibrium .(real-time) Green’s
functions in Chapter 9, are all coupled closely to the experiments in mesoscopic
devices.

In spite of the desire to consistently increase the level of difficulty and
understanding as one moves through the book, there remain some anomalies.
We have chosen, for example, to put the treatment of the recursive Green’s
functions in the chapter with waveguide transport and the recursive solutions
to the Lippmann—Schwinger equation, since these two treatments of quantum
transport are closely coupled. Nevertheless, the reader would be well served
to go through the introduction of the Green’s functions prior to undertaking an
in-depth study of the recursive Green’s function. This, of course, signals that
topics have been grouped together in the chapters in a manner that relies on their
connection to one another in physics, rather than in a manner that would be
optimally chosen for a textbook. Nevertheless, we are convinced that one can
use this book in graduate coursework, as is clear from our own courses.

Chapter 1 is, of course, an introduction to the material in the entire book, but
new material on nanodevices has been added, as progress in silicon technology
has brought the normal metal-oxide-semiconductor field-effect transistor
(MOSFET) into the mesoscopic world. Additionally, a new introduction to
nanowires and carbon nanotubes is given. Chapter 2 remains a discussion
of quantum confined systems, but now focuses more on the one-dimensional
structures rather than the two-dimensional ones. New material here includes a
discussion of numerical solutions to the Schrddinger equation and Poisson’s
equation as well as non-self-consistent Born approximations to scattering in
quasi-one-dimensional systems. Chapter 3 remains focused upon very low
temperature transport, but now includes the introduction to the different
approaches to (equilibrium) quantum transport. Chapter 4 is a completely new
chapter focused upon the quantum Hall effect and the fractional quantum
Hall effect.

Chapter 5 is also a new chapter which focuses upon quantum wires, and
includes some of the modern investigations into various effects in these wires.
Chapter 6 focuses upon quantum dots with new material on the role of spin.
The focus upon single electron tunneling remains, but considerable new material
on coupled dots has been added. Then, Chapter 7 discusses weakly disordered
systems. New material on (strong) localization is presented so that weak local-
ization can be placed in its context in relation to this material.

Chapter 8 is mostly carried over from the first edition and discusses the role
of temperature. Here, the Matsubara Green’s functions are introduced in addition
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to the semiclassical approach. Finally, Chapter 9 discusses nonequilibrium
transport and nanodevices. Here, considerable new material on semiconductor
nanodevices has been added. Device simulation via the scattering matrix imple-
mentation based upon the Lippmann—Schwinger equation appears as well as the
treatment with nonequilibrium Green’s functions.
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1
Introduction

Nanostructures are generally regarded as ideal systems for the study of
electronic transport. What does this simple statement mean?

First, consider transport in large, macroscopic systems. In bulk materials and
devices, transport has been well described via the Boltzmann transport equation
or similar kinetic equation approaches. The validity of this approach is based on
the following set of assumptions: (i) scattering processes are local and occur at a
single point in space; (ii) the scattering is instantaneous (local) in time; (iii) the
scattering is very weak and the fields are low, such that these two quantities form
separate perturbations on the equilibrium system; (iv) the time scale is such that
only events that are slow compared to the mean free time between collisions are
of interest. In short, one is dealing with structures in which the potentials vary
slowly on both the spatial scale of the electron thermal wavelength (to be
defined below) and the temporal scale of the scattering processes.

Since the late 1960s and early 1970s, researchers have observed quantum
effects due to confinement of carriers at surfaces and interfaces, for example
along the Si/SiO, interface, or in heterostructure systems formed between
lattice-matched semiconductors. In such systems, it is still possible to separate
the motion of carriers parallel to the surface or interface, from the quantized
motion perpendicular, and describe motion semiclassically in the unconstrained
directions. Since the 1980s, however, it has been possible to pattern structures
(and devices) in which characteristic dimensions are actually smaller than the
appropriate mean free paths of interest. In GaAs/AlGaAs semiconductor hetero-
structures, it is possible at low temperature to reach mobilities in excess of 10’
cm?/Vs, which leads to a (mobility) mean free path on the order of 100 pm
and an inelastic (or phase-breaking) mean free path even longer. (By “phase-
breaking” we mean decay of the energy or phase of the “wave function” repre-
senting the carrier.) This means that transport in a regime in which the Boltzmann
equation is clearly invalid becomes easily accessible. Each of the assumptions
detailed above provides a factor that is neglected in the usual Boltzmann
transport picture. Structures (and devices) can readily be built with dimensions
that are much smaller than these dimensions, so new physical processes become
important in the overall transport. These devices have come to be called
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nanostructures, nanodevices, or mesoscopic devices, where the latter term is
used to indicate structures that are large compared to the microscopic (atomic)
scale but small compared to the macroscopic scale upon which normal
Boltzmann transport theory has come to be applied.

A simple consideration illustrates some of the problems. If the basic
semiconductor material is doped to 10'® cm >, then the mean distance between
impurity atoms is 10 nm, so that any discrete device size, say 0.1 pm, spans
a countably small number of impurity atoms. That is, a cubic volume of 0.1 um
on a side contains only 1000 atoms. These atoms are not uniformly distributed in
the material; instead they are randomly distributed with large fluctuations in the
actual concentration on this size scale. The variance in the actual number N in
any volume (that is, the difference from one such volume to another) is roughly
V/N, which in this example is about 32 atoms (or 3.3% of the doping). Since
these atoms often comprise the main scattering centers at low temperatures,
the material is better described as a highly conducting but disordered material,
since the material is certainly not uniform on the spatial scale of interest here.
As the current lines distort to avoid locally high densities of impurities, the
current density becomes non-uniform spatially within the material; this can be
expected to lead to new effects. Since the dimensions can be smaller than
characteristic scattering lengths, transport can be ballistic and highly sensitive
to boundary conditions (contacts, surfaces, and interfaces). To complicate the
problem, many new effects that can be observed depend upon the complicated
many-body system itself, and simple one-electron theory no longer describes
these new effects. Finally, the size can be small compared to the phase-breaking
length, which nominally describes the distance over which the electron wave’s
phase is destroyed by some process. In this case, the phase of the particle
becomes important, and many phase-interference effects begin to appear in the
characteristic conductance of the material.

Our purpose in this book is twofold. First, we will attempt to review the
observed experimental effects that are seen in nanoscale and mesoscopic
devices. Second, we want to develop the theoretical understanding necessary
to describe these experimentally observed phenomena. In the remainder of this
chapter, the goal is simply to give an introduction into the type of effects that are
seen and to discuss why these effects will be important to future technology,
as well as for their interesting physics.

1.1 Nanostructures: the impact
1.1.1 Progressing technology

Since the introduction of the integrated circuit in the late 1950s, the number of
individual transistors that can be placed upon a single integrated circuit chip has
approximately quadrupled every three years. The fact that more functionality
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can be put on a chip when there are more transistors, coupled to the fact that the
basic cost of the chip (in terms of $/cm?®) has changed very little from one
generation to the next (until recently), leads to the conclusion that greater
integration leads to a reduction in the basic cost per function for high-level
computation as more functions are placed on the chip. It is this simple function-
ality argument that has driven device feature reduction according to a compli-
cated scaling relationship [1]. In 1980, Hewlett-Packard produced a single-chip
microprocessor containing approximately 0.5 M devices in its 1 cm? area [2].
This chip was produced with transistors having a nominal 1.25 pm gate length
and was considered a remarkable step forward. In contrast, by 2007, the
functionality of the dynamic random access memory (DRAM) is on the order
of 2 Gbit, a number which is expected to double by 2010 [3]. The printed gate
length of production microprocessor transistors in this same year was 48 nm and
the physical gate length closer to 25 nm. Research devices have been demon-
strated down to 10 nm gate length or less. Clearly, current integrated circuit
manufacturing is truly a nanoscale technology.

For a 25 nm gate length Si device, the number of atoms spanning the channel
is on the order of a 100 or less. Hence, one can reasonably ask just how far the
size of an individual electron device can be reduced, and if we understand
the physical principles that will govern the behavior of devices as we approach
this limiting size. In 1972, Hoeneisen and Mead [4] discussed the minimal size
expected for a simple MOS gate (as well as for bipolar devices). Effects such as
oxide breakdown, source—drain punch-through, impact ionization in the chan-
nel, and so on were major candidates for processes to limit downscaling. Years
later, Mead [5] reconsidered this limit in terms of the newer technologies that
have appeared since the earlier work, concluding that one could easily downsize
the transistor to a gate length of 30 nm if macroscopic transport theory continued
to hold. The current ITRS roadmap (2007) now predicts scaling solutions
down to 10 nm gate length before a serious “brick wall” is encountered, and
15 nm gate lengths are scheduled for production by 2010. Laboratory MOSFET
devices with gate lengths down to 15 nm have been reported by Intel [6] and
AMD [7] which exhibit excellent /-V characteristics, and 6 nm gate length
p-channel transistors have been reported by IBM [8].

Given this rapid scaling of device technology towards 1 nm feature sizes, it
becomes obvious that we must now ask whether our physical understanding of
devices and their operation can be extrapolated down to very small space and
time scales without upsetting the basic macroscopic transport physics — or do the
underlying quantum electronic principles prevent a down-scaling of the essential
semiclassical concepts upon which this macroscopic understanding is based?
Preliminary considerations of this question were presented more than two
decades ago [9]. If transport is ballistic, meaning carriers suffer few or no
scattering as they traverse the channel, quantum effects are expected to play
a major role. Ballistic (and therefore coherent and unscattered) transport was
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already observed in the base region of a GaAs/AlGaAs hot electron transistor
[10]. From this, it is estimated that the inelastic mean free path for electrons
in GaAs may be as much as 0.12 pm at room temperature. Simulation results
in Si indicate that at room temperature, the ballistic mean free path may be much
smaller, only a few nanometers [11], which may partly explain the success
in scaling of Si MOSFETs discussed above. The inelastic mean free path is on
the order of (and usually equal to) the energy relaxation length /, = vr,, where 7,
is the energy relaxation time and v is a characteristic velocity (which is
often the Fermi velocity in a degenerate system)." Since the phase will likely
remain coherent over these distances, it is quite natural to expect phase inter-
ference effects to appear in the transport, and to expect most of the assumptions
inherent in the Boltzmann picture to be violated. A small device will then
reflect the intimate details of the impurity distribution in the particular device,
and macroscopic variations can then be expected from one device to another.
These effects are, of course, well known in the world of mesoscopic devices.
Thus, the study of mesoscopic devices, even at quite low temperatures,
provides significant insight into effects that may well be expected to occur in
future devices.

Consider, as an example, a simple MOSFET with a gate length of 50 nm and a
gate width of 100 nm. If the number of carriers in the channel is 2 x 10'? cm 2,
there are only about 100 electrons on average in the open channel. If there is a
fluctuation of a single impurity, the change in the conductance will not be 1%,
but will be governed by the manner in which the phase interference of the
carriers is affected by this fluctuation. This effect is traditionally taken to be of
order €*/h, which leads to a fluctuation in conductance of about 40 uS. If our
device were to exhibit conductance of 1 S/mm (of gate width), the absolute
conductance would only be 100 pS, so that the fluctuation is on the order 0of 40%
of the actual conductance. This is a very significant fluctuation, arising from
the lack of ensemble averaging in the limited number of carriers in the device.
In fact, this may well be a limiting mechanism for the down-scaling of individual
transistor sizes, when trying to realize circuit architectures involving 100s of
millions of transistors that have to perform within a relatively narrow range
of tolerance, necessitating entirely new types of fault tolerant designs to accom-
modate such fluctuations.

! There is some ambiguity here because the energy relaxation time is usually defined as the effective
inverse decay rate for the mean electron energy or temperature. The definition here talks about a
mean free path for energy relaxation, which is not quite the same thing. This is complicated by the
fact that, in mesoscopic systems, one really talks about a phase-breaking time, which is meant to
refer to the average time for relaxation of the coherent single-particle phase of a charge carrier.
Again, this is a slightly different definition. This ambiguity exists throughout the literature, and
although we will probably succumb to it in later chapters, the reader should recognize these subtle
differences.
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1.1.2 Some physical considerations

In macroscopic conductors, the resistance that is found to exist between two
contacts is related to the bulk conductivity and to the dimensions of the
conductor. In short, this relationship is expressed by
L
R=—, (1.1)
where o is the conductivity and L and A are the length and cross-sectional area
of the conductor, respectively. If the conductor is a two-dimensional conductor,
such as a thin sheet of metal, then the conductivity is the conductance per square,
and the cross-sectional area is just the width W. This changes the basic formula
(1.1) only slightly, but the argument can be extended to any number of dimen-
sions. Thus, for a d-dimensional conductor, the cross-sectional area has the
dimension A4 = L4~!, where here L must be interpreted as a “characteristic
length.” Then, we may rewrite (1.1) as

R="—. (1.2)
Here, o, is the d-dimensional conductivity. Whereas one normally thinks of the
conductivity, in simple terms, as ¢ = ney, the d-dimensional term depends upon
the d-dimensional density that is used in this definition. Thus, in three dimen-
sions, o3 is defined from the density per unit volume, while in two dimensions
0, is defined as the conductivity per unit square and the density is the sheet
density of carriers. The conductivity (in any dimension) is not expected to vary
much with the characteristic dimension, so we may take the logarithm of the last
equation. Then, taking the derivative with respect to In(L) leads to

dln(R)
3D 2~ % (1.3)

This result is expected for macroscopic conducting systems, where resistance
is related to the conductivity through Eq. (1.2). We may think of this limit as
the bulk limit, in which any characteristic length is large compared to any
characteristic transport length.

In mesoscopic conductors, the above is not necessarily the case, since we
must begin to consider the effects of ballistic transport through the conductor.
(For ballistic transport we generally adopt the view that the carrier moves
through the structure with very little or no scattering, so that it follows normal
phase space trajectories.) However, let us first consider a simpler situation.
We have assumed that the conductivity is independent of the length, or that o,
is a constant. However, if there is surface scattering, which can dominate the
mean free path, then one could expect that the latter is / ~ L. Since I = vpT,
where v is the Fermi velocity in a degenerate semiconductor and 7 is the mean
free time, this leads to



