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Preface

I must admit with regret, and not a little embarrassment, that eight years
have passed since I sat down to write a preface for the first volume of this
book. A great deal has changed for the community of quantum opticians in the
meantime. The interests of some have been turned to the fascinating properties
of degenerate quantum gases where a number of analogies with quantum optics
are to be found. Then there is the quantum information revolution: a whole
new language to be learned, built around John Bell’s reading of the Bohr—
Einstein debate and venerable words like entanglement, launched in a new
direction, with the goals of achieving an unbreakable code and a new paradigm
for computation—a quantum-mechanical one. Considering the passage of time
and what has occurred, I can only trust it will not disappoint to announce
that this second volume of Statistical Methods has not been diverted in either
direction—or, perhaps, rather closer to the truth, it could not: a path was
already set in the preface to Volume 1, and this is the path I have followed in
preparing Chaps. 9 through 19 of Volume 2.

The subtitle, Nonclassical Fields, is perhaps not as accurate as it might be
as a summary of content; or to put it another way, if my aim from the start
had been to write a book on this topic, parts of that book would differ sig-
nificantly from what follows here. Possibly the most important thing missing,
and something that should be said, is that there are two quite distinct paths
to a definition of nonclassicality in quantum optics. The first is grounded in
the existence, or otherwise, of a nonsingular and positive Glauber—Sudarshan
P function. The physical grounding is in the treatment of optical measure-
ments, specifically the photoelectric effect: for a given optical field, can the
photoelectron counting statistics, including all correlations, be reproduced by
a Poisson process of photoelectron generation driven by a classical light inten-
sity, allowed most generally to be stochastic? Viewed at a more informal level,
the question asks whether or not the infamous proposal of Bohr, Kramers, and
Slater for the interaction of classical light and quantized atoms can be upheld
in the presence of the observable photoelectron counting statistics.
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This criterion for nonclassicality is likely to be the one offered up by most
quantum opticians when pressed for a definition. There is, however, a second.
It is an outgrowth of John Bell’s work and does not speak directly about
measurements of any sort. At issue arc the variances and covariances of a set
of quantum mechanical observables—the quadrature amplitudes occupying
this or that optical mode: can these quantities all be computed from a classi-
cal probability distribution, admitting hidden variables but no nonlocal con-
nections between the values they take? Generally speaking, but not always,
variances and covariances computed from an entangled state within quantum
mechanics cannot be recovered from a classical distribution. Squeezed light
provides a notable counterexample; for it, a positive definite Wigner function
serves as the required classical probability distribution. Thus, by the second
Bell-based criterion, squeezed light is not nonclassical. (Though in a perverse
reversdl of Bell’s argument, the entangled character of the two-mode squeezed
state is often seen to trump this observation.) Squeezed light is of course
nonclassical by the former P function criterion.

In this volume squeezed light is nonclassical. The “Nonclassical” of the
subtitle is to be read in the P function sense. Starting with two chapters on
squeezing in the degenerate parametric oscillator, the volume continues on
with the theme taken up in Volume 1 of “methods developed in quantum
optics for analyzing quantum fluctuations in terms of a visualizable evolution
over time.” These are the methods of the quantum—classical correspondence:
the phase-space representations, which when applied to an operator master
equation yield a Fokker—Planck equation, albeit, in many cases, only after
a system size expansion of the full equation of motion is made—i.e., only
when the quantum noise is sufficiently small. Applied to the degenerate para-
metric oscillator, the methods fail, though the positive P representation of
Drummond and Gardiner does manage to resurrect “a visualizable evolution
over time”—qualified, however, by serious difficulties of a new kind.

Chapters 9 and 10 deal with squeezing, the degenerate parametric oscilla-
tor, and how squeezed light generation causes the standard phase-space meth-
ods to fail. Chapter 11 then develops the positive P approach, while Chap.
12 uncovers the problems it encounters when the system size expansion no
longer holds.

Problems with the positive P representation aside, much of the appeal of
the phase-space approach is lost when the system size expansion fails. Its very
premise is a classical dynamic plus quantum fluctuation “fuzz,” the “fuzz”
a perturbation by definition; “fluctuation” is defined in a classical sense from
the very beginning. While the positive P representation escapes this back-
ground to some extent, it also retreats from all but a formal connection with
the physics—as a generator of quantum averages—and any resolution of its
difficulties can only deepen that retreat.
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On this score it is worthwhile to recall my appeal in the preface to Vol-
ume 1: “Nothing in the Schrodinger equation fluctuates. What then is a quan-
tum fluctuation?” A classically inspired method for computing quantum aver-
ages is unlikely to illuminate this question. The seven chapters from Chap. 13
to Chap. 19 work towards an outlook that possibly can.

The context for the development is provided by cavity QED, which is
explored in Chaps. 13-16. Its defining conditions of strong dipole coupling
between a resonant atomic transition and an optical cavity mode are essen-
tially the same—for single atoms—as those defining a small system size, such
that the system size expansion fails, and experiments have reached a remark-
able level of sophistication, a level hardly imagined as researchers set out to
realize strong dipole coupling some 20 years ago.

My attempt to illuminate the “What is a quantum fluctuation?” question
occupies Chaps. 17-19. Here quantum trajectory theory is developed. The ap-
proach, at bottom, is conventional, recalling observations that have been made
about the meaning of quantum mechanics since the time of Niels Bohr. Cer-
tainly nothing fluctuates in the Schrédinger equation; indeed, the Schrodinger
equation describes no realized happenings of any sort—no realized events; it
governs the time evolution of probabilities of events. To actually realize events,
the probabilities must be put into action, to play out as a stochastic process.
But here is the sticking point: the playing out is not unique, not only in
the trivial sense that the throwing of a die yields different answers on every
throw, but because the very shape of the die is not uniquely defined from
within the Schrodinger equation itself. It is we the commentators who chose
a shape through the question we chose to ask—or so it might appear, though
in practice it is not so much a matter of commentators and their questions,
but a subdivision of the physical world into a subsystem acting and one acted
(irreversibly) upon. With only the “acting” subsystem defined, there are, of
course, many possibilitiés for the subsystem “acted (irreversibly) upon” and
such a division is not unique.

The many years that have passed since I began writing this book have
left me indebted to numerous people, for their support and encouragement,
and for the detection of many of those irritating errors that inevitably seem
to make it into the typeset text. I thank both the University of Oregon and
the University of Auckland for support during periods of concentrated work
on the book. I am also indebted to the Alexander Humboldt Foundation,
my German sponsor, Wolfgang Schleich, and his tireless wife Kathy, for their
support during a year spent in Ulm; the visit allowed me to restart a project
that had languished for quite some time. Then the patience of the editorial
office of Prof. Wolf Beiglbock at Springer can only be wondered at. Finally,
there are my students in Auckland, Mile Gu, Andy Chia, Changsuk Noh, Rob
Fisher, and Felipe Dimer de Oliveira, who provided indispensable service by
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reading parts of the text and detecting so many of those irritating errors, and
my special thanks go to Hyunchul Nha who, as my postdoc, made numerous
contributions that enabled me to improve what is written.

I must add that work on the book has stolen many hours away from my
wife Marybeth. My principal debt is to her. We can both now be happy that
this one cause, at least, of stolen hours is at a close.

Auckland Howard Carmichael
January 2007
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The Degenerate Parametric Oscillator I:
Squeezed States

9.1 Introduction

Volume 1 of this book introduced the formalism of open systems in quan-
tum optics as it existed in the early 1980s, two decades after the invention of
the laser. In it we met the operator master equation, the quantum regression
formula, and the phase-space methods, based on the P, @, and Wigner rep-
resentations, that provide “classical” visualizations of the fluctuations of the
radiation field—the so-called quantum—classical correspondence. We also met
Fokker-Planck equations and stochastic differential equations, and the vari-
ous methods of classical statistical physics that help with the analysis within
the phase-space representations. The application of all these things was illus-
trated by two classic examples: resonance fluorescence and the single-mode
laser.

We begin Volume 2 by recalling some elementary aspects of laser theory,
which introduce us to the theme that will carry us forward into a discussion of
nonclassical fields. The quantum theory of the laser illustrates how an opera-
tor master equation, the quantum-—classical correspondence, and the methods
of classical statistical physics can be used to solve a nontrivial problem of some
practical importance. There is, however, something missing in this example;
we alluded to this at the end of Sect. 7.1.3. The laser is essentially a classi-
cal device. Thus, we seem to lose the distinction between quantum statistics
and classical statistics in passing from the Hamiltonian of Sect. 7.2.1 to the
classical stochastic description of the laser developed in Chap. 8. That is not
to say, of course, that laser action has nothing to do with quantum mechan-
ics. Stimulated emission gain results from an inverted population in quantized
atomic states, and the fluctuations of the laser field, characterized by ngpon,
are certainly quantum fluctuations; they arise from the intrinsic probabilistic
character of quantum mechanics, not from any externally imposed statistical
assumption. On the other hand, these fluctuations can be described by a clas-
sical stochastic process. The laser operates as a classical nonlinear oscillator
with additive noise. Surely, in general, we would not expect a quantum field
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to be describable in the language of classical statistics, where the fundamental
quantities are probabilities. The fundamental quantities in quantum mechan-
ics are probability amplitudes. Why does our theory of the laser not recognize
the distinction?

In fact the language of the laser theory developed in Chap. 8 is, in a sense,
quantum mechanical, but in a limited sense only. After all, the Fokker-Planck
equations (8.61a), (8.86a), (8.121a), and (8.131a) determine the Glauber—
Sudarshan P representation for a quantum-mechanical density operator; they
evolve a quantum state. The important qualification is that the laser example
does not exploit the full flexibility of the P representation and consequently
avoids the need for probability amplitudes. We deduce this, on the one hand,
from the fact that the P distribution need not satisfy all the requirements
of a classical probability density—it may take on negative values, or be more
singular than a d-function, as it is for a Fock state (Eqs. 3.31, 3.40, and 3.41)—
yet for the laser it does. Thus, in quantum-mechanical language, the state of
the laser field (Eq. 3.15) is a statistical mixture of coherent states. To define
it, we need only the probabilities that enter this mixture. There is no call for
probability amplitudes. Wherever amplitude (phase) information is needed, it
is provided by the phase-space variable «, the complex amplitude of the laser
field.

A second issue, beyond that of merely representing states, is the issue
of dynamics. We cannot generally expect the state of a quantum system to
evolve over time according to the rules governing the time evolution of a clas-
sical stochastic process. Our experience with the phase-space representation
for two-level atoms (Chap. 6) provides an example showing that there is no
guarantee that the quantum-—classical correspondence will identify a Fokker-
Planck equation with a given master equation. In the laser case, however, it
does just this.

The two mentioned properties—a positive, nonsingular P distribution, and
the Fokker—Planck form for the phase-space equation of motion—are not en-
tirely independent. It is as well, however, to note them both. What if, for
example, we substitute the Q representation for the P representation? The Q
distribution is positive and nonsingular by definition, but it need not satisfy
a Fokker-Planck equation, as we will see very shortly (Sect. 10.1.2).

Indeed, there is a choice to be made between different phase-space rep-
resentations (Chap. 4). As a result, there is apparently some ambiguity in
asserting that an optical field, like the field emitted by a laser, is essentially
classical because it is described within a particular phase-space representa-
tion by a classical stochastic process. Such a description may exist in one
representation and not in another. The P representation is special, though,
as it is this representation, not the Q or Wigner representation, that gives the
normal-ordered, time-ordered averages (Sect. 4.3.3) that enter the quantum
theory of photodetection and coherence [9.1,9.2]. Because of this, any field
that is described by a classical stochastic process within the P representation
can be described, equivalently, within the framework of classical statistical op-



