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Introduction

Homotopy theory is the study of the invariants and properties of topological
spaces X and continuous maps f that depend only on the homotopy type of the
space and the homotopy class of the map. (We recall that two continuous maps
f.g: X — Y are homotopic (f ~ g) if there is a continuous map F : X xI — Y
such that F(z,0) = f(z) and F(z,1) = g(z). Two topological spaces X" and }

f
have the same homotopy type if there are continuous maps X _—" )" such that

g

fg ~ idy and gf ~ idx.) The classical examples of such invariants are the
singular homology groups H;(.X) and the homotopy groups 7,(X). the latter
consisting of the homotopy classes of maps (S™, *¥) — (X, z¢). Invariants such
as these play an essential role in the geometric and analytic behavior of spaces
and maps.

The groups H;(X) and 7,(X), n > 2, are abelian and hence can be rational-
ized to the vector spaces H;(X;Q) and 7,(X) ® Q. Rational homotopy theory
begins with the discovery by Sullivan in the 1960°s of an underlying geomet-
ric construction: simply connected topological spaces and continuous maps be-
tween them can themselves be rationalized to topological spaces Xg and to maps
fo : Xog — Yq, such that H,(Xg) = H.(X:;Q) and 7. (Xg) = 7.(X) ® Q. The
rational homotopy type of a CW complex X is the homotopy type of Xg and the
rational homotopy class of f : X — Y is the homotopy class of fg : Xg — 3.
and rational homotopy theory is then the study of properties that depend only
on the rational homotopy type of a space or the rational homotopy class of a
map.

Rational homotopy theory has the disadvantage of discarding a considerable
amount of information. For example, the homotopy groups of the sphere S*
are non-zero in infinitely many degrees whereas its rational homotopy groups
vanish in all degrees above 3. By contrast, rational homotopy theory has the
advantage of being remarkably computational. For example, there is not even a
conjectural description of all the homotopy groups of any simply connected finite
CW complex, whereas for many of these the rational groups can be explicitly
determined. And while rational homotopy theory is indeed simpler than ordinary
homotopy theory. it is exactly this simplicity that makes it possible to address
(if not always to solve) a number of fundamental questions.

This is illustrated by two early successes:

o (Vigué-Sullivan [152]) If M is a simply connected compact riemannian
manifold whose rational cohomology algebra requires at least two generators
then its free loop space has unbounded homology and hence (Gromoll-Meyer
[73]) M has infinitely many geometrically distinct closed geodesics.

o (Allday-Halperin [3]) If an r torus acts freely on a homogeneous space G/H
(G and H compact Lie groups) then

r <rankG —rank H ,
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as well as by the list of open problems in the final section of this monograph.

The computational power of rational homotopy theory is due to the discovery
by Quillen [135] and by Sullivan [144] of an explicit algebraic formulation. In
each case the rational homotopy type of a topological space is the same as the
isomorphism class of its algebraic model and the rational homotopy type of a
continuous map is the same as the algebraic homotopy class of the correspond-
ing morphism between models. These models make the rational homology and
homotopy of a space transparent. They also (in principle, always, and in prac-
tice. sometimes) enable the calculation of other homotopy invariants such as the
cup product in cohomology. the Whitehead product in homotopy and rational
Lusternik-Schnirelmann category.

In its initial phase research in rational homotopy theory focused on the identi-
fication of rational homotopy invariants in terms of these models. These included
the homotopy Lic algebra (the translation of the Whitehead product to the homo-
topy groups of the loop space 2.X under the isomorphism 7., (.X) & 7. (QX)),
LS category and cone length.

Since then, however. work has concentrated on the properties of these in-
variants, and has uncovered some truly remarkable. and previously unsuspected
phenomena. For example

e If X is an n-dimensional simply connected finite CW complez, then either
its rational homotopy groups vanish in degrees > 2n, or else they grow
ezponentially.

o Moreover, in the second case any interval (k,k + n) contains an integer i

such that m;(X) @ Q # 0.

o Again in the second case the sum of all the solvable ideals in the homotopy
Lie algebra is a finite dimensional ideal R, and

dim Reyen < cat Xz .

e Again in the second case for all elements a € Teven(1X) R Q of sufficiently
high degree there is some B € m.(QX)RQ such that the iterated Lie brackets
[a.[a,....[a.B]]] are all non-zero.

e Finally, rational LS category satisfies the product formula
cat(Xg x Yg) = cat Xg + catYyg ,
in sharp contrast with what happens in the ‘non-rational’ case.

The first bullet divides all simply connected finite CW complexes X into two
groups: the rationally elliptic spaces whose rational homotopy is finite dimen-
sional, and the rationally hyperbolic spaces whose rational homotopy grows ex-
ponentially. Moreover, because H.(Q2X:Q) is the universal enveloping algebra
on the graded Lie algebra Ly = 7.(QX)®Q, it follows from the first two bullets
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that whether X is rationally elliptic or rationally hyperbolic can be determined
from the numbers b; = dim H;(2X;Q), 1 < i < 3n - 3, where n = dim X.
Rationally elliptic spaces include Lie groups, homogeneous spaces, manifolds
supporting a codimension one action and Dupin hypersurfaces (for the last two
see [77]). However, the ‘generic’ finite CW complex is rationally hyperbolic.
The theory of Sullivan replaces spaces with algebraic models, and it is exten-
sive calculations and experimentation with these models that has led to much of
the progress summarized in these results. More recently the fundamental article

of Anick [11] has made it possible to extend these techniques for finite CW com-

plexes to coefficients Z (% - pl) with only finitely many primes invested, and

thereby to obtain analogous results for H. (02X ; F,) for large primes p. Moreover,
the rational results originally obtained via Sullivan models often suggest possible
extensions beyond the rational realm. An example is the ‘depth theorem’ origi-
nally proved in [54] via Sullivan models and established in this monograph (§35)
topologically for any coefficients. This extension makes it possible to generalize
many of the results on loop space homology to completely arbitrary coefficients.

However, for reasons of space and simplicity, in this monograph we have re-
stricted ourselves to rational homotopy theory itself. Thus our monograph has
three main objectives:

o To provide a coherent, self-contained, reasonably complete and usable de-
scription of the tools and technigques of rational homotopy theory.

o To provide an account of many of the main structural theorems with proofs
that are often new and/or considerably simplified from the original versions
in the literature.

o To illustrate both the use of the technology, and the consequences of the
theorems in a rich variety of ezamples.

We have written this monograph for graduate students who have already en-
countered the fundamental group and singular homology, although our hope is
that the results described will be accessible to interested mathematicians in other
parts of the subject and that our rational homotopy colleagues may also find it
useful. To help keep the text more accessible we have adopted a number of
simplifying strategies:

coefficients are usually restricted to fields k of characteristic zero.

topological spaces are usually restricted to be simply connected.

l

Sullivan models for spaces (and their properties) are derived first and only
then extended to the more general case of fibrations, rather than being
deduced from the latter as a special case.

- complex diagrams and proofs by diagram chase are almost always avoided.
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Of course this has meant, in particular, that theorems and technology are not
always established in the greatest possible generality, but the resulting saving in
technical complexity is considerable.

It should also be emphasized that this is a monograph about topological spaces.
This is important, because the models themselves at the core of the subject are
strictly algebraic and indeed we have been careful to define them and establish
their properties in purely algebraic terms. The reader who needs the machin-
ery for application in other contexts (for instance local commutative algebra)
will find it presented here. However the examples and applications throughout
are drawn largely from topology, and we have not hesitated to use geometric
constructions and techniques when this seemed a simpler and more intuitive
approach.

The algebraic models are, however, at the heart of the material we are pre-
senting. They are all graded objects with a differential as well as an algebraic
structure (algebra, Lie algebra, module, .. . ). and this reflects an understanding
that emerged during the 1960’s. Previously objects with a differential had often
been thought of as merely a mechanism to compute homology; we now know
that they carry a homotopy theory which is much richer than the homology.
For example, if X is a simply connected CW complex of finite type then the
work of Adams [1] shows that the homotopy type of the cochain algebra C*(X)
is sufficient to calculate the loop space homology H.(Q2X') which, on the other
hand, cannot be computed from the cohomology algebra H*(X). This algebraic
homotopy theory is introduced in [134] and studied extensively in [20].

In this monograph there are three differential graded categories that are im-
portant:

(i) modules over a differential graded algebra (dga), (R.d).
(ii) commutative cochain algebras.
(ii) differential graded Lie algebras (dgl’s).

In each case both the algebraic structure and the differential carry information,
and in each case there is a fundamental modelling construction which associates
to an object A in the category a morphism

¢e:M — A

such that H(y) is an isomorphism (p is called a quasi-isomorphism) and such
that the algebraic structure in M is, in some sense “free”.

These models (the cofibrant objects of [134]) are the exact analogue of a free
resolution of an arbitrary module over a ring. In our three cases above we find,
respectively:

(i) A semi-free resolution of a module over (R,d) which is, in particular a
complex of free R-modules.
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(i) A Sullivan model of a commutative cochain algebra which is a quasi-
isomorphism from a commutative cochain algebra that, in particular, is
free as a commutative graded algebra. (These cochain algebras are called
Sullivan algebras.)

(iii) A free Lie model of a dgl, which is a quasi-isomorphism from a dgl that is
free as a graded Lie algebra.

These models are the main algebraic tools of the subject.

The combination of this technology with its application to topological spaces
constitutes a formidable body of material. To assist the reader in dealing with
this we have divided the monograph into forty sections grouped into six Parts.
Each section presents a single aspect of the subject organized into a number
of distinct topics, and described in an introduction at the start of the section.
The table of contents lists both the titles of the sections and of the individual
topics within them. Reading through the table of contents and scanning the
introductions to the sections should give the reader an excellent idea of the
contents.

Here we present an overview of the six Parts, indicating some of the highlights
and the role of each Part within the book.

Part I: Homotopy Theory, Resolutions for Fibrations and P-local
Spaces.

This Part is a self-contained short course in homotopy theory. In particular,
80 is merely a summary of definitions and notation from general topology, while
§3 is the analogue for (graded) algebra. The text proper begins with the basic
geometric objects, CW complexes and fibrations in §1 and §2, and culminates
with the rationalization in §9 of a topological space. Since CW complexes and
fibrations are often absent from an introductory course in algebraic topology we
present their basic properties for the convenience of the reader. In particular,
we construct a CW model for any topological space and establish Whitehead’s
homotopy lifting theorem, since this is the exact geometric analogue, and the
motivating example, for the algebraic models referred to above.

Then, in §6, we introduce the first of these algebraic models: the semifree
resolution of a module over a differential graded algebra. These resolutions are
of key importance throughout the text. Now modules over a dga arise naturally
in topology in at least two contexts:

e If f: X —'Y is a continuous map then the singular cochain algebra C*(X)
is a module over C*(Y) via C*(f).

e If X x G — X 1is the action of a topological monoid then the singular
chains C,(X) are a module over the chain algebra C,(G).

In §7 we consider the first case when f is a fibration, and use a semifree
resolution to compute the cohomology of the fibre (when Y is simply connected
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with homology of finite type). In §8 we consider the second case when the action
is that of a principal G-fibration X — Y and use a semifree resolution to
compute H,(Y). Both these results are due essentially to J.C. Moore.

The second result turns out to give an easy, fast and spectral-sequence-free
proof of the Whitehead-Serre theorem that for a continuous map f: X — Y
between simply connected spaces and for k C Q, H.(f; k) is an isomorphism
if and only if 7.(f) ® k is an isomorphism. We have therefore included this as
an interesting application, especially as the theorem itself is fundamental to the
rationalization of spaces constructed in §9.

Aside from these results it is in Part I that we establish the notation and
conventions that will be used throughout (particularly in §0-§5) and state the
theorems in homotopy theory we will need to quote. Since it turned out that
with the definitions and statements in place the proofs could also be included
at very little additional cost in space, we indulged ourselves (and perhaps the
reader) and included these as well.

Part II: Sullivan Models

This Part is the core of the monograph, in which we identify the rational
homotopy theory of simply connected spaces with the homotopy theory of com-
mutative cochain algebras. This occurs in three steps:

e The construction in §10 of Sullivan’s functor from topological spaces X to
commutative cochain algebras App(X), which satisfies C*(X) ~ Apr(X).

e The construction in §12 of the Sullivan model
(AV,d) = (4,d)

for any commutative cochain algebra satisfying H°(A,d) = k. (Here, fol-
lowing Sullivan ([144]), and the rest of the rational homotopy literature,
AV denotes the free commutative graded algebra on V.)

o The construction in §17 of Sullivan’s realization functor which converts
a Sullivan algebra, (AV,d), (simply connected and of finite type) into a
rational topological space |AV,d| such that (AV,d) is a Sullivan model for
ApL(|AV.d]).

Along the way we show that these functors define bijections:

rational homotopy types o isomorphism classes of
of spaces minimal Sullivan algebras

and

{ homotopy classes of } o hémotapy classes of

. -~ maps between minimal
maps between rational spaces Sullivan algebras
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where we restrict to spaces and cochain algebras that are simply connected with
cohomology of finite type.

Sullivan’s functor Ap; was motivated by the classical commutative cochain
algebra Apg(M) of smooth differential forms on a manifold. In §11 we review
the construction of Apgr(M) and prove Sullivan’s result that Apgp(M) is quasi-
isomorphic to Apz(M;R). This implies (§12) that they have the same Sullivan
model.

The rest of Part II is devoted to the technology of Sullivan algebras, and to
geometric applications. We construct models of adjunction spaces, identity the
generating space V' of a Sullivan model with the dual of the rational homotopy
groups and identity the quadratic part of the differential with the dual of the
Whitehead product. Here the constructions are in §13 but some of the proofs
are deferred to §15.

In §14 we construct relative Sullivan algebras and decompose anyv Sullivan
algebra as the tensor product of a minimal and a contractible Sullivan algebra.
In §15 we use relative Sullivan algebras to model fibrations and show (applying
the result from §7) that the Sullivan fibre of the model is a Sullivan model for
the fibre. Finally, in §16 this material is applied to the structure of the homology
algebra H.(QX; k) of the loop space of X.

Part III: Graded Differential Algebra (Continued).

In §3 we were careful to limit ourselves to those algebraic constructions needed
in Parts I and 1I. Now we need more: the bar construction of a cochain algebra,
spectral sequences (finally, we held off as long as possible!) and some elementary
homological algebra.

Part 1V: Lie Models

In Part I we introduced the first of our algebraic categories (modules over
a dga), in Part II we focused on commutative cochain algebras and now we
introduce and study the third category: differential graded Lie algebras.

In §21 we introduce graded Lie algebras and their universal enveloping algebras
and exhibit the two fundamental examples in this monograph: the homotopy
Lie algebra Ly = 7.(Q2X) ® k of a simply connected topological space, and the
homotopy Lie algebra L of a minimal Sullivan algebra (AV.d). The latter vector
space is defined by L = Hom (V¥*+!, k) with Lie bracket given by the quadratic
part of d. Moreover, if (AV,d) is the Sullivan model for X then Ly = L.

In §22 we construct the free Lie models for a dgl, (L,d). We also construct (in
8§22 and §23) the classical homotopy equivalences

(L.d) ~ C-(L, d) and (4 d) ~ E(A.d)

between the categories of dgl’s (with L = L3, of finite type) and commutative
cochain algebras (with simply connected cohomology of finite type). In particular
a Lie model for a free topological space X is a free Lie model of L5y 4). where
(AV,d) is a Sullivan model for X.
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Given a dgl (L,d) that is free as a Lie algebra on generators v; of degree n;
we show in §24 how to construct a CW complex X with a single (n; + 1)-cell
for each v;, and whose free Lie model is exactly (L.d). This provides a much
more geometric approach to the passage algebra — topology then the realization
functor in §17.

Finally, §24 and §25 are devoted to Majewski’s theorem [119] that if (L,d) is a
free Lie model for X then there is a chain algebra quasi-isomorphism U(L, d) =
C.(QX; k) which preserves the diagonals up to dga homotopy.

Part V: Rational Lusternik-Schnirelmann Category

The LS category, cat X, of a topological space X is the smallest number m
(or infinity) such that X can be covered by m + 1 open sets each of which is
contractible in X. In particular:

e cat X is an invariant of the homotopy type of X.

o Ifcat X = m then the product of any m + 1 cohomology classes of X is
zero.

o If X is a CW complex then cat X < dimX but the inequality may be
strict: indeed for the wedge of spheres X = \/ S* we have dim X = oc and

i=1

cat X = 1.

The rational LS category, catg X, of X is the LS category of a rational CW
complex in the rational homotopy type of X.

Part V begins with the presentation in §27 of the main properties of LS cat-
egory for ‘ordinary’ topological spaces. We have included this material here for
the convenience of the reader and because, to our knowledge, much of it is not
available outside the original articles scattered through the research literature.

We then turn to rational LS category (§28) and its calculation in terms of
Sullivan models (§29). A key point is the Mapping Theorem: Given a continuous
map [ : X — Y between simply connected spaces, then

7.(f) @ Q injective = catgX <catyY .

In particular, the Postnikov fibres in a Postnikov decomposition of a simply
connected finite CW complex all have finite rational LS category. (The integral
analogue is totally false!).

A second key result is Hess’ theorem (Mcat = cat), which is the main step in
the proof of the product formula cat X¢ x Yo = cat Xg + cat Y in §30. Finally,
in §31 we prove a beautiful theorem of Jessup which gives circumstances under
which the rational LS category of a fibre must be strictly less than that of the
total space of a fibration. The “a,3” theorem described at the start of this
introduction is an immediate corollary.
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Part VI: The Rational Dichotomy: Elliptic and Hyperbolic Spaces
AND Other Applications

In this Part we use rational homotopy theory to derive the results referred
to at the start of this introduction (and others) on the structure of H,(QX; k),
when X is a simply connected finite CW complex. These are outlined in the
introductions to the sections, and we leave it to the reader to check there, rather
than repeating them here.

As the overview above makes evident, this monograph makes no pretense of
being a complete account of rational homotopy theory, and indeed important
aspects have been omitted. For example we do not treat the iterated integrals
approach of Chen ([37], [79], [145]) and therefore have not been able to include
the deep applications to algebraic geometry of Hain and others (e.g. [80], [81],
[101]). Equivariant rational homotopy theory as developed by Triantafillou and
others ([151]) is another omission, as is any serious effort to treat the non-simply
connected case, even though at least nilpotent spaces are covered by Sullivan’s
original theory. We have not described the Sullivan-Haefliger model ([144], [78])
for the section space of a fibration even in the simpler case of mapping space,
except for the simple example of the free loop space X ' nor have we included
the Sullivan-Barge classification ([144], [18]) of closed manifolds up to rational
homotopy type. And we have not given Lemaire’s construction [108] of a finite
CW complex whose homotopy Lie algebra is not finitely generated as a Lie
algebra.

Moreover, this monograph does not pursue the connections outside or beyond
rational homotopy theory. Such connections include the algebraic homotopy the-
ory developed by Baues [20] following Quillen’s homotopical algebra [134]. There
is no mention in the text (except in the problems at the end) of Anick’s extension
of the theory to coefficients with only finitely many primes inverted ([11]) and its
application to loop space homology,and there is equally no mention of how the
results in Part VI generalize to arbitrary coefficients [56]. And finally, we have
not dealt with the interaction with the homological study of local commutative
rings [14] that has been so significantly exploited by Avramov and others.

We regret that limitations of time and energy (as well as our publisher’s insis-
tence on limiting the number of pages!) have made it necessary simply to refer
the reader to the literature for these important aspects of the subject, in the
hope that what is presented here will make that task an easier one.

In the last twenty five years a number of monographs have appeared that
presented various parts of rational homotopy theory. These include Algebres
Connexes et Homologie des Espaces de Lacets by Lemaire [109], On PL de
Rham Theory and Rational Homotopy Type by Bousfield and Gugenheim ([30]),
Théorie Homotopique des Formes Différentielles by Lehmann ([107]), Rational
Homotopy Theory and Differential Forms by Griffiths and Morgan ([72]), Homo-
topie Rationnelle: Modeles de Chen, Quillen, Sullivan by Tanré ([145]), Lectures
on Minimal Models by Halperin [82], La Dichotomie Elliptique - Hyperbolique
en Homotopic Rationnelle by Félix ([50]), and Homotopy Theory and Models
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by Aubry ([12]). Our hope is that the present work will complement the real
contribution these make to the subject.

This monograph brings together the work of many researchers, accomplished
as a co-operative effort for the most part over the last thirty years. A clear
account of this history is provided in [91], and we would like merely to indicate
here a few of the high points. First and foremost we want to stress our individual
and collective appreciation to Daniel Lehmann, who led the development of the
rational homotopy group at Lille that provided the milieu in which all three of us
became involved in the subject. Secondly, we want to emphasize the importance
of the memoir [109] by Lemaire and of the article [21] by Baues and Lemaire
which have formed the foundation for the use of Lie models.

In this context the mini-conference held at Louvain in 1979 played a key role.
It brought together the two approaches (Lie and Sullivan) and crystalized the
questions around LS category that proved essential in subsequent work. Another
mini-conference in Bonn in 1981 (organized jointly by Baues and the second
author) led to a trip to Sofia to meet Avramov and the intensification of the
infusion into rational homotopy of the intuition from local algebra begun by
Anick, Avramov, Lofwall and Roos.

This monograph was conceived of in 1992 and in the intervening eight years
we have benefited from the advice and suggestions of countless colleagues and
students. It is a particular pleasure to acknowledge the contributions of Cornea,
Dupont, Hess, Jessup, Lambrechts and Murillo, who have all worked with us as
students or postdocs and have all beaten problems we could not solve. We also
wish to thank Peter Bubenik whose careful reading uncovered an unbelievable
number of mistakes, both typographical and mathematical.

The actual writing and rewriting have been a team effort accomplished by the
three of us working together in intensive sessions at sites that rotated through
the campuses at which we have held faculty positions: the Université Catholique
de Louvain (Felix), the University of Toronto and the University of Maryland
(Halperin) and the Université de Lille 1 and the Université d’ Angers (Thomas).
The Fields Institute for Research in Mathematical Sciences in Toronto provided
us with a common home during the spring of 1996, and the Centre International
pour Mathématiques Pures et Appliquées, hosted and organized a two week sum-
mer school at Breil where we presented a first version of the text. Our granting
agencies (Centre National de Recherche Scientifique, FNRS, National Sciences
and Engineering Research Council of Canada, North Atlantic Treaty Organiza-
tion) all provided essential financial support. To all of these organizations we
express our appreciation.

Above all, however, we wish to express our deep gratitude and appreciation
to Lucile Lo, who converted thousands of pages of handwritten manuscript to
beautifully formatted final product with a speed, accuracy, intelligence and good
humor that are unparalleled in our collective experience.



Rational Homotopy Theory xvii

And finally, we wish to express our appreciation to our families who have lived
through this experience, and most especially to Agnes, Danielle and Janet for
their constant nurturing and support, and to whom we gratefully dedicate this
book.

Yves Felix
Steve Halperin
Jean-Claude Thomas



