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Preface to the Third Edition

The first two chapters of this book have been thoroughly revised and sig-
nificantly expanded. Sections have been added on elementary methods of in-
tegration (on homogeneous and inhomogeneous first-order linear equations
and on homogeneous and quasi-homogeneous equations), on first-order linear
and quasi-linear partial differential equations, on equations not solved for the
derivative, and on Sturm’s theorems on the zeros of second-order linear equa-
tions. Thus the new edition contains all the questions of the current syllabus
in the theory of ordinary differential equations.

In discussing special devices for integration the author has tried through-
out to lay bare the geometric essence of the methods being studied and to
show how these methods work in applications, especially in mechanics. Thus
to solve an inhomogeneous linear equation we introduce the delta-function and
calculate the retarded Green’s function; quasi-homogeneous equations lead to
the theory of similarity and the law of universal gravitation, while the theorem
on differentiability of the solution with respect to the initial conditions leads
to the study of the relative motion of celestial bodies in neighboring orbits.

The author has permitted himself to include some historical digressions
in this preface. Differential equations were invented by Newton (1642-1727).
Newton considered this invention of his so important that he encoded it as an
anagram whose meaning in modern terms can be freely translated as follows:
“The laws of nature are expressed by differential equations.”

One of Newton’s fundamental analytic achievements was the expansion
of all functions in power series (the meaning of a second, long anagram of
Newton’s to the effect that to solve any equation one should substitute the
series into the equation and equate coefficients of like powers). Of particular
importance here was the discovery of Newton’s binomial formula (not with
integer exponents, of course, for which the formula was known, for example,
to Viete (1540-1603), but — what is particularly important — with fractional
and negative exponents). Newton expanded all the elementary functions in
“Taylor series” (rational functions, radicals, trigonometric, exponential, and
logarithmic functions). This, together with a table of primitives compiled by
Newton (which entered the modern textbooks of analysis almost unaltered),
enabled him, in his words, to compare the areas of any figures “in half of a
quarter of an hour.”
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Newton pointed out that the coefficients of his series were proportional
to the successive derivatives of the function, but did not dwell on this, since
he correctly considered that it was more convenient to carry out all the com-
putations in analysis not by repeated differentiation, but by computing the
first terms of a series. For Newton the connection between the coefficients of
a series and the derivatives was more a means of computing derivatives than
a means of constructing the series.

On of Newton’s most important achievements is his theory of the solar
system expounded in the Mathematical Principles of Natural Philosophy (the
Principia) without using mathematical analysis. It is usually assumed that
Newton discovered the law of universal gravitation using his analysis. In fact
Newton deserves the credit only for proving that the orbits are ellipses (1680)
in a gravitational field subject to the inverse-square law; the actual law of
gravitation was shown to Newton by Hooke (1635-1703) (cf. § 8) and seems
to have been guessed by several other scholars.

Modern physics begins with Newton’s Principie. The completion of the
formation of analysis as an independent scientific discipline is connected with
the name of Leibniz (1646-1716). Another of Leibniz’ grand achievements is
the broad publicizing of analysis (his first publication is an article in 1684)
and the development of its algorithms! to complete automatization: he thus
discovered a method of teaching how to use analysis (and teaching analysis
itself) to people who do not understand it at all — a development that has to
be resisted even today.

Among the enormous number of eighteenth-century works on differential
equations the works of Euler (1707-1783) and Lagrange (1736-1813) stand
out. In these works the theory of small oscillations is first developed, and
consequently also the theory of linear systems of differential equations; along
the way the fundamental concepts of linear algebra arose (eigenvalues and
eigenvectors in the n-dimensional case). The characteristic equation of a lin-
ear operator was long called the secular equation, since it was from just such
an equation that the secular perturbations (long-term, i.e., slow in comparison
with the annual motion) of planetary orbits were determined in accordance
with Lagrange’s theory of small oscillations. After Newton, Laplace and La-
grange and later Gauss (1777-1855) develop also the methods of perturbation
theory.

When the unsolvability of algebraic equations in radicals was proved, Li-
ouville (1809-1882) constructed an analogous theory for differential equations,
establishing the impossibility of solving a variety of equations (including such
classical ones as second-order linear equations) in elementary functions and
quadratures. Later S. Lie (1842-1899), analyzing the problem of integration
equations in quadratures, discovered the need for a detailed investigation of
groups of diffeomorphisms (afterwards known as Lie groups) — thus from the

! Incidentally the concept of a matrix, the notation a;;, the beginnings of the theory
of determinants and systems of linear equations, and one of the first computing
machines, are due to Leibniz.
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theory of differential equations arose one of the most fruitful areas of mod-
ern mathematics, whose subsequent development was closely connected with
completely different questions (Lie algebras had been studied even earlier by
Poisson (1781-1840), and especially by Jacobi (1804-1851)).

A new epoch in the development of the theory of differential equations
begins with the works of Poincaré (1854-1912), the “qualitative theory of
differential equations,” created by him, taken together with the theory of
functions of a coraplex variable, lead to the foundation of modern topology.
The qualitative theory of differential equations, or, as it is more frequently
known nowadays, the theory of dynamical systems, is now the most actively
developing area of the theory of differential equations, having the most im-
portant applications in physical science. Beginning with the classical works
of A. M. Lyapunov (1857-1918) on the theory of stability of motion, Russian
mathematicians have taken a large part in the development of this area (we
mention the works of A. A. Andronov (1901-1952) on bifurcation theory, A.
A. Andronov and L. S. Pontryagin on structural stability, N. M .Krylov (1879~
1955) and N. N. Bogolyubov on the theory of averaging, A. N. Kolmogorov
on the theory of perturbations of conditionally-periodic motions). A study
of the modern achievements, of course, goes beyond the scope of the present
book (one can become acquainted with some of them, for example, from the
author’s books, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer-Verlag, New York, 1983; Mathematical Methods of Clas-
sical Mechanics, Springer-Verlag, New York, 1978; and Catastrophe Theory,
Springer-Verlag, New York, 1984).

The author is grateful to all the readers of earlier editions, who sent their
comments, which the author has tried to take account of in revising the book,
and also to D. V. Anosov, whose numerous comments promoted the improve-
ment of the present edition.

V. I Arnol’d



From the Preface to the First Edition

In selecting the material for this book the author attempted to limit the
material to the bare minimum. The heart of the course is occupied by two
circles of ideas: the theorem on the rectification of a vector field (equivalent
to the usual existence, uniqueness, and differentiability theorems) and the
theory of one-parameter groups of linear transformations (i.e., the theory of
autonomous linear systems).

The applications of ordinary differential equations in mechanics are stud-
ied in more detail than usual. The equation of the pendulum makes its ap-
pearance at an early stage,; thereafter efficiency of the concepts introduced is
always verified through this example. Thus the law of conservation of energy
appears in the section on first integrals, the “small parameter method” is de-
rived from the theorem on differentiation with respect to a parameter, and
the theory of linear equations with periodic coefficients leads naturally to the
study of the swing (“parametric resonance”).

The exposition of many topics in the course differs widely from the tradi-
tional exposition. The author has striven throughout to make plain the geo-
metric, qualitative side of the phenomena being studied. In accordance with
this principle there are many figures in the book, but not a single complicated
formula. On the other hand a whole series of fundamental concepts appears,
concepts that remain in the shadows in the traditional coordinate presenta-
tion (the phase space and phase flows, smooth manifolds and bundles, vector
fields and one-parameter diffeomorphism groups). The course could have been
significantly shortened if these concepts had been assumed to be known. Un-
fortunately at present these topics are not included in courses of analysis or
geometry. For that reason the author was obliged to expound them in some
detail, assuming no previous knowledge on the part of the reader beyond the
standard elementary courses of analysis and linear algebra.

The present book is based on a year-long course of lectures that the author
gave to second-year mathematics majors at Moscow University during the
years 1968-1970.

In preparing these lectures for publication the author received a great deal
of help from R. I. Bogdanov. The author is grateful to him and all the students
and colleagues who communicated their comments on the mimeographed text
of the lectures (MGU, 1969). The author is also grateful to the reviewers D.
V. Anosov and S. G. Krein for their attentive review of the manuscript.

1971 V. Arnol’d



Frequently used notation

R - the set (group, field) of real numbers.

C - the set (group, field) of complex numbers.

Z - the set (group, ring) of integers.

r € X CY - zis an element of the subset X of the set Y.

XNY, XUY - the intersection and union of the sets X and Y.

f:X =Y - fis a mapping of the set X into the set Y.

r — y — the mapping takes the point z to the point y.

fog - the composite of the mappings (¢ being applied first).

3, V¥ — there exists, for all.

* — a problem or theorem that is not obligatory (more difficult).

R™ - a vector space of dimension n over the field R.

Other structures may be considered in ths set R™ (for example, an affine struc-
ture, a Euclidean structure, or the direct product of n lines). Usually this will be
noted specifically (“the affine space R™”, “the Euclidean space R"”, “the coordinate
space R™”, and so forth).

Elements of a vector space are called vectors. Vectors are usually denoted by bold
face letters (v, &€, and so forth). Vectors of the coordinate space R™ are identified
with n-tuples of numbers. We shall write, for example, v = (v1,...,%.) = vi€; +
v+ + v, €,; the set of n vectors e; is called a coordinate basis in R".

We shall often encounter functions a real variable t called time. The derivative
with respect to t is called velocity and is usually denoted by a dot over the letter:

z = dz/dt.
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Preface to the Third Edition

The first two chapters of this book have been thoroughly revised and sig-
nificantly expanded. Sections have been added on elementary methods of in-
tegration (on homogeneous and inhomogeneous first-order linear equations
and on homogeneous and quasi-homogeneous equations), on first-order linear
and quasi-linear partial differential equations, on equations not solved for the
derivative, and on Sturm’s theorems on the zeros of second-order linear equa-
tions. Thus the new edition contains all the questions of the current syllabus
in the theory of ordinary differential equations.

In discussing special devices for integration the author has tried through-
out to lay bare the geometric essence of the methods being studied and to
show how these methods work in applications, especially in mechanics. Thus
to solve an inhomogeneous linear equation we introduce the delta-function and
calculate the retarded Green’s function; quasi-homogeneous equations lead to
the theory of similarity and the law of universal gravitation, while the theorem
on differentiability of the solution with respect to the initial conditions leads
to the study of the relative motion of celestial bodies in neighboring orbits.

The author has permitted himself to include some historical digressions
in this preface. Differential equations were invented by Newton (1642-1727).
Newton considered this invention of his so important that he encoded it as an
anagram whose meaning in modern terms can be freely translated as follows:
“The laws of nature are expressed by differential equations.”

One of Newton’s fundamental analytic achievements was the expansion
of all functions in power series (the meaning of a second, long anagram of
Newton’s to the effect that to solve any equation one should substitute the
series into the equation and equate coefficients of like powers). Of particular
importance here was the discovery of Newton’s binomial formula (not with
integer exponents, of course, for which the formula was known, for example,
to Viete (1540-1603), but — what is particularly important — with fractional
and negative exponents). Newton expanded all the elementary functions in
“Taylor series” (rational functions, radicals, trigonometric, exponential, and
logarithmic functions). This, together with a table of primitives compiled by
Newton (which entered the modern textbooks of analysis almost unaltered),
enabled him, in his words, to compare the areas of any figures “in half of a
quarter of an hour.”
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Newton pointed out that the coefficients of his series were proportional
to the successive derivatives of the function, but did not dwell on this, since
he correctly considered that it was more convenient to carry out all the com-
putations in analysis not by repeated differentiation, but by computing the
first terms of a series. For Newton the connection between the coefficients of
a series and the derivatives was more a means of computing derivatives than
a means of constructing the series.

On of Newton’s most important achievements is his theory of the solar
system expounded in the Mathematical Principles of Natural Philosophy (the
Principia) without using mathematical analysis. It is usually assumed that
Newton discovered the law of universal gravitation using his analysis. In fact
Newton deserves the credit only for proving that the orbits are ellipses (1680)
in a gravitational field subject to the inverse-square law; the actual law of
gravitation was shown to Newton by Hooke (1635-1703) (cf. § 8) and seems
to have been guessed by several other scholars.

Modern physics begins with Newton’s Principia. The completion of the
formation of analysis as an independent scientific discipline is connected with
the name of Leibniz (1646-1716). Another of Leibniz’ grand achievements is
the broad publicizing of analysis (his first publication is an article in 1684)
and the development of its algorithms! to complete automatization: he thus
discovered a method of teaching how to use analysis (and teaching analysis
itself) to people who do not understand it at all — a development that has to
be resisted even today.

Among the enormous number of eighteenth-century works on differential
equations the works of Euler (1707-1783) and Lagrange (1736-1813) stand
out. In these works the theory of small oscillations is first developed, and
consequently also the theory of linear systems of differential equations; along
the way the fundamental concepts of linear algebra arose (eigenvalues and
eigenvectors in the n-dimensional case). The characteristic equation of a lin-
ear operator was long called the secular egquation, since it was from just such
an equation that the secular perturbations (long-term, i.e., slow in comparison
with the annual motion) of planetary orbits were determined in accordance
with Lagrange’s theory of small oscillations. After Newton, Laplace and La-
grange and later Gauss (1777-1855) develop also the methods of perturbation
theory.

When the unsolvability of algebraic equations in radicals was proved, Li-
ouville (1809-1882) constructed an analogous theory for differential equations,
establishing the impossibility of solving a variety of equations (including such
classical ones as second-order linear equations) in elementary functions and
quadratures. Later S. Lie (1842-1899), analyzing the problem of integration
equations in quadratures, discovered the need for a detailed investigation of
groups of diffeomorphisms (afterwards known as Lie groups) - thus from the

' Incidentally the concept of a matrix, the notation a;;, the beginnings of the theory
of determinants and systems of linear equations, and one of the first computing
machines, are due to Leibniz.



