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NEW THEOREMS ON ABSOLUTE
STABILITY OF NON-AUTONOMOUS
NONLINEAR CONTROL SYSTEMS

Y. H. KU and H. T. CHIEH, The Moore School of Electrical Engi-

neering , University of Pennsylvania , Philadelphia , Pennsylvania

SUMMARY
This paper gives four new theorems on absolute stability of
non-autonomous nonlinear control systems. Theorem I is concerned
with the absolute stability of a nonlinear control system with system
function G (s), nonlinearity N, and a strongly bounded inpt r,

(t) (such as e sin bt). Theorem Il is concerned with the abso-
lute stability of a control system with two nonlinearities N, and N, ,
and a strongly bounded input r, (t). Theorem [[ is concerned
with the absolute stability of a control system with system function

i
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G, (s), which has a pole at the origin, and nonlinearity N, , sub-
jected to a monotonically bounded input r, (t) (such as a/In (bt
+¢)). Theorem [V is then concerned with the absolute stability of
a control system similar to the system of Theorem ||| , but with an
additional input r, (t).

Two more theorems are concerned with the absolute stability of

autonomous nonlinear systems with one or two nonlinearities.

All theorems are given with proofs in the Appendices.

1. INTRODUCTION

Absolute stability of autonomous control systems have been extens-
ively discussed and imporlant theorems were given by many authors such
as Lure', Letov’, Popov’, Kalman', Aizerman and Gantmacher ,
Rekasius and Gibson®, Rekasius', Ibrahim and Rekasius®, Brockett’,
Willems and Brockett', Brockett and Willems'', Lasalle”, Narendra
and Neuman"”, Hahn", Lefschetz”, etc. The theorems for autono-
mous systems are considered as special cases of nonautonomous systems in
this paper.

Theorems on L, -stability of nonautonomous control systems were giv-
en by I. W. Sandbury®and C. A. Desoer’ . In these theorems, L,-
stability was considered for systems with a single nonlinearity and a trans-
fer function having poles with negative real paris. This paper gives theo-
rems with proofs on absolute stability for non-autonomous systems with two
nonlinearities ( one in the forward branch and another in feedback

branch) and a transfer function having additional poles on the imaginary
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axis, subjected to a strongly bounded input. Moreover, if the transfer
function contains a pole at the origin, similar theorems can be given with
a single nonlinearity but subjected to a strongly bounded input plus a
monotonically bounded input.

llustrative examples with digital computer verifications are given for

the theorems.
2. DEFINITIONS

(a) A piecewise continuous function r, {(t) is said io be strongly

bounded if

£y

by (1) I<p, J Ir, (1) ldt<p, and

0

J I, (1) ldt<pe;, where g, ;. and py are
0

non-negative constants which can be replaced by a single constant p in
the above inequalities if ;= maxl pt;, py, pslis assumed.
(b) A continuous function r, (t) is said to be monotonically

bounded if
I, (1) l<p, I, (1) I <p, and r» (1) and r, (t) are
monotonic .
(c) A real single-valued and continuous function f| {e)is said to be
in the sector
[k, k' }if it satisfies the condition
k" <f, (e) /e<k,’

where the equalities take place, at most, finite number of times in any
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finite interval, and that f; (e) =0 only at e =0 when k; " =0. The

function f, (e) is shown in Fig.1.

(d) A real single-valued and continuous function f, (c) is said to
be in the sectorl k,, k.l if it satisfies the condition®
k <f, (¢) /o<k,

The function f, (¢) is shown in Fig.2.

(e) The control system subjected to the input r (t) as shown by
Fig.3.is said to be absolutely stable® in the sectorl k, ", k, " 1if there
exist two positive numbers o and {3 such that for all f (e) inl k",
k,"land all t>0

le (1) |<ou+Ble (0) |
and
lime (1 =0
where p is the same as defined in (a) and (b).

(f) The control system subjected to the input r (t) as shown by
Fig.4.is said to be absolutely stable in sectors[ k; ", k,” 1 and[ k,,
k,] if there exist two positive numbers « and § such that for all f, (e) in
[k", k,”1, £ (¢) inlk;, k]Jand all 1=0

le (1) l<au+Ble (0) |
and

lime (1) =0

(@ This condition was given by Aizerman and Gantmacher in reference 5.
@ Definition of absolute stability for autonomous systems was given by Aizerman and Gantmacher
in reference 5.
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where 11 is the same as defined in (a) and (b).

3. THEOREMS

Theorem [

The non-autonomous control system (Fig.3) subjected to a strongly
bounded input r; (t) is absolutely stable in the sectorl k, ™, k, Tt
there exists a non-negative q such that the expression 1/k,” H+ (1 +
sq) G (s) is positive real, where k,” >k, ~ =0 and H>0.

Theorem |[I

The non-autonomous control system (Fig.4) subjected to a strongly
bounded input r, (t) is absolutely stable in sectorsl k, ", k,” 1 and
[k,, k,]if there exists a non-negative ¢ such that the expression 1/
Lk "+ (1+sq) G (s) is positive rcal, where k" >k =0, k,
=k, >0and ', (¢) >0.

Theorem [Il

The non-antonomous control system (Fig.3) subjected to a mono-
tonically bounded input r, (t) is absolutely stable in the sectorl k, *,
k, * 1 if there exists a non-negative q such that the expression 1/k, " H +
(1+sq) G, (s) is positive real, wherek,” >k, * >0, H>0, lli}Erz
(1) =0and, G (s) =G, (s) which has a pole at the origin.
Tneorem [V

The non-antonomous control system ( Fig.3) subjected to a mono-
tonically bounded input plus a strongly bounded inputl r (t) =r (t)

+1, (t)]is absolutely siable in the sectorl k, 7, k, " 1if there exists a

% R
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non-negative q such that the expression 1/k, " H+ (1+sq) G, (s) is
positive real, where k,* >k, =0, H>0, ‘li’rzclr (t) =0and G (s)
=G, (s) which has a pole at the origin.

Theorem V

The autonomous control system {Fig.4.with r (t) =0) is abso-
lutely stable in sectors k; *, k, "] andl k,, k,] if there exist a nonneg-
ative g and a A<k, k; * such that the expression 1/ (kk," —=1) + (1
+sq) G (s, X) is positive real, where either k, or k, * is nonnegative
and that G (s, ) =G (s) /[1+AG (s)].

Theorem V]

The autonomous control system (Fig.4. with r (1) =0) is abso-
lutely stable in sectors [k, ", k," ] and [k,, k,] if there exist a real
qand a A<k k * such that for all w, 1/ (kk,” ~2) +Re [ (1+
joq) G (jw, A)] =8>0, where either k, or k; * is non-negative and
G (s, A) has no poles with positive real parts, with any poles on the
imaginary axis being simple and having positive residues.

Corollary
If q can be set to zero, then all conditions being imposed on I

(t), , (1) and ' (¢) in Theorem I through IV can be removed.

4. ILLUSTRATIVE EXAMPLES

Example 1

Given a control system shown in Fig.3.with 1 (t) = 100e "

Mo
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sint, f;, (e) =¢’-5¢"+7e, H=0.5and G (s) = (s+1) / (&
+s+1) +s/ (+1). In order to apply the theorems, we make the

following investigations.

(1) (rl (t) |586=‘u|,

j lr, (t) Idt= (100/1.01) coth (0.17/2) =638 =y,
0

%

andJ Iy, (1) Vdt~ 100 esch 0.1/2 = 637. Hence 1, (1) is
0

strongly bounded with
p=max| 86, 638, 637] =638.
(2) k" =minl & -5e+7] =0.75 and
k," =maxl & —5e+7] = .
(3) Forq=0and k,  H= o, we have
1/k,"H+Rel (1+joq) G (jw)] =1 (1-&") +w’] 7' 0.
This system is absolutely stable according to Theorem I . The computer

results of the output ¢ (1) and the error e (1) are shown in Fig.5.

Example 2

Given a control system shown in Fig.4 with r, (t) = 100e™"sint,
£ (e) =0.5¢ (1+0.9cos10¢),

£, (¢) =¢+0.9 (1-cose)

and G (s) = (s -s-1) / (s +3s +4s+2).

(1) r, (t) is strongly bounded.

(2) minl f;, (e) /el =0.05=k, "




WEHEBeR -w+as

max{ f, (e) /el =0.95=k," .
minl £, (¢) /¢l =0.345 =k, and
max[ f, (¢) /cl =1.655=k,
(3) kk," =1.57, take 1.6. It can be shown that for 0= q=<
0.5, I/kk "+ (I1+sq) G (s) is positive real.
Hence the system is absolutely stable according to Theorem [I .

'The computer results are shown in Fig.6.

Example 3

Given a control system shown in Fig.3.with r, (t) =10 (1 +
)7, n>0, f, (e) =& -5¢ +7e, H=2and G (s) =G, (s)

$+s—1
-3 2 .
s +3s " +s+1

-1
- S

(1) 1, (1) is a decreasing function of t and 1, (t) = —10/n (1
+1t)'*"" is an increasing function. Hence r (t) is monotonically

bounded.

(2) k* =0475 and k,* = o .

(3) Fork,” = o and q=3, I/k," H+ (1 +sq) G, (s) is
positive real.

The system is absolutely stable according to Theorem [l . The com-

puter results for n =2 are shown in Fig.7.

Example 4

Given a control system shown in Fig.3.withr (t) =1 (1) +n

(1) where

\ PETEN
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n () =10u (1) -5u (t-2) -12.5u (1-4)
+10u (1-6) —2.5u (t-8) andr, (1) =10/In (100t+2),
f, (e) =0.5¢ (1+0.9cos 10e), H=1.6 and
G (s) =G, (s) =1l/s+ (=s=1) / (5 +35 +4s+2).

(1) r, (t) is stongly bounded and 1, (t) is monotonically
bounded .

(2) kk =~ =1.52.

(3) For0.25=q=0.5, 1/kk," + (1+sq) G, (s) is posi-
tive real.

The system is absolutely stable according 1o Theorem [V . The com-

puter results are shown in Fig.8.

Example 5

Given a control system shown in Fig.4.with r (t) =0, f (e)
=0.2 (ecose) —0.75e,

f, () =candG (s) = (28 +45° +25+2) / (5" +4s" +6¢
+4s+3).

(1) r (1) =0 implies that p=0.

(2) mintf, (e) /el = -0.95 and maxl f; (e) /el = —0.55,
k =1, k,=1. Thatis kk,* = —0.95 and k,k,"
= -0.55.

(3) Assuming A= — 1, we have G (s, A) = (s+2) / (&' +
2s+1) +s/ (&+1).
It can be shown that 1/ (kk,” —=2) + (l1+sq) G (s, A)
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