新 琇

90004748

便統诱全集

15

辽宁教育出版社

◎参加全国政协招待海外学者宴会(一九九二年六月) 左起:赵朴初、雷洁琼、顾毓琇、王婉靖、杨振宁

◎江泽民主席题写书名 上海交通大学出版社一九九二年版

顾毓琇科学论文集(四)

此为试读,需要完整PDF请访问: www.ertongbook.com

CONTENTS

New Theorems on Absolute Stability of Non-Autonomous Nonlinear	
Control Systems	005
Heat-Transfer Problems Solved by the Method of Nonlinear	
Mechanics	032
Comparison of Variances Evaluated by Kolmogorov's and Volterra's	
Techniques	060
Liapunov Function of a High-Order System	067
Stability of Control Systems with Multiple Nonlinearities and Multiple	;
Inputs	074
Volterra Functional Analysis of Nonlinear Systems with Deterministic	
and Stochastic Inputs	089
Behavior of a Class of Nonlinear Systems to Ergodic Sample	
Functions	102
Volterra Functional Analysis of Nonlinear Time - Varying	
Systems	117
Identification of Randomly Interconnected Logic Nets	151
On Nonlinear Control Systems Analysis	167
On the Application of Diakoptics to Nonlinear Systems	221

Liapunov Function of a Sixth - Order Nonlinear System	_ 236
Stochastic Stability in Nonlinear Control Systems	_ 246
Stochastic Stability in Nonlinear Oscillating Systems	_ 259
Global Properties of Diffusion Processes on Cylindrical Type Phase	
Space	_ 281
Bifurcation Theorems and Limit Cycles in Nonlinear	
Systems - I	311
Bifurcation Theorems and Limit Cycles in Nonlinear	
Systems - II	_ 338
Analysis of Nonlinear Systems with Stochastic Input and Stochastic	
Parameters – I	358
Solution of the Riccati Equation by Continued Fractions	
Analysis of Nonlinear Systems with Stochastic Input and Stochastic	
Parameters – II	404
On the Analysis of Nonlinear Stochastic Systems	416
Theory of Nonlinear Systems	434
On Systematic Procedures for Constructing Magic Squares	479
Some Theorems on Construction of Magic Squares	503
On Nonlinear Systems-CHAOS	524
CHAOS and Limit Cycle in Duffing's Equation	545
CHAOS in Van der Pol's Equation	592
The Chinese Remainder Theorem	605

NEW THEOREMS ON ABSOLUTE STABILITY OF NON-AUTONOMOUS NONLINEAR CONTROL SYSTEMS

Y. H. KU and H. T. CHIEH, The Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania

SUMMARY

This paper gives four new theorems on absolute stability of non-autonomous nonlinear control systems. Theorem I is concerned with the absolute stability of a nonlinear control system with system function $G_{(s)}$, nonlinearity N_1 and a strongly bounded inpt r_1 (t) (such as e^{-at} sin bt). Theorem [] is concerned with the absolute stability of a control system with two nonlinearities N_1 and N_2 , and a strongly bounded input r_1 (t). Theorem [] is concerned with the absolute stability of a control system with system function

 G_1 (s), which has a pole at the origin, and nonlinearity N_1 , subjected to a <u>monotonically bounded</u> input r_2 (t) (such as a/ln (bt + c)). Theorem IV is then concerned with the absolute stability of a control system similar to the system of Theorem III, but with an additional input r_1 (t).

Two more theorems are concerned with the absolute stability of autonomous nonlinear systems with one or two nonlinearities.

All theorems are given with proofs in the Appendices.

1. INTRODUCTION

Absolute stability of autonomous control systems have been extensively discussed and important theorems were given by many authors such as Lur'e¹, Letov², Popov³, Kalman⁴, Aizerman and Gantmacher⁵, Rekasius and Gibson⁶, Rekasius⁷, Ibrahim and Rekasius⁸, Brockett⁹, Willems and Brockett¹⁰, Brockett and Willems¹¹, Lasalle¹², Narendra and Neuman¹³, Hahn¹⁴, Lefschetz¹⁵, etc. The theorems for autonomous systems are considered as special cases of nonautonomous systems in this paper.

Theorems on L_2 -stability of nonautonomous control systems were given by I. W. Sandbury and C. A. Desoer $^{17}\,_{\odot}$ In these theorems, L_2 -stability was considered for systems with a single nonlinearity and a transfer function having poles with negative real parts. This paper gives theorems with proofs on absolute stability for non-autonomous systems with two nonlinearities (one in the forward branch and another in feedback branch) and a transfer function having additional poles on the imaginary

axis, subjected to a strongly bounded input. Moreover, if the transfer function contains a pole at the origin, similar theorems can be given with a single nonlinearity but subjected to a strongly bounded input plus a monotonically bounded input.

Illustrative examples with digital computer verifications are given for the theorems.

2. DEFINITIONS

(a) A piecewise continuous function \mathbf{r}_i (t) is said to be strongly bounded if

$$|r_1|(t)| \leq \mu_1, \quad \int_0^\infty |r_1|(t)| dt \leq \mu_2 \text{ and }$$

$$\int_0^\infty |\dot{r}_1|(t)| dt \leq \mu_3, \text{ where } \mu_1, \quad \mu_2, \text{ and } \mu_3 \text{ are }$$

non-negative constants which can be replaced by a single constant μ in the above inequalities if $\mu = \max [\mu_1, \mu_2, \mu_3]$ is assumed.

(b) A continuous function r_2 (t) is said to be monotonically bounded if

 $|\mathbf{r}_2|(t)| \leq \mu$, $|\dot{\mathbf{r}}_2|(t)| \leq \mu$, and $\dot{\mathbf{r}}_2|(t)$ and $\mathbf{r}_2|(t)$ are monotonic.

(c) A real single-valued and continuous function $f_1(e)$ is said to be in the sector

 $[k_1^*, k_2^*]$ if it satisfies the condition

$$k_1^* \leq f_1^-(e) / e \leq k_2^*$$

where the equalities take place, at most, finite number of times in any

finite interval, and that f_1 (e) = 0 only at e = 0 when $k_1^* = 0$. The function f_1 (e) is shown in Fig.1.

(d) A real single-valued and continuous function f_2 (c) is said to be in the sector k_1 , k_2l if it satisfies the condition $k_1 \le f_2$ (c) $c \le k_2$

The function f_2 (c) is shown in Fig.2.

(e) The control system subjected to the input r (t) as shown by Fig.3.is said to be absolutely stable in the sector k_1^* , k_2^* if there exist two positive numbers α and β such that for all f_1 (e) in $[k_1^*$, k_2^*] and all t>0

$$|c(t)| \le \alpha \mu + \beta |c(0)|$$

and

$$\lim_{t \to \infty} c(t) = 0$$

where μ is the same as defined in (a) and (b).

(f) The control system subjected to the input r (t) as shown by Fig. 4. is said to be absolutely stable in sectors [k_1^* , k_2^*] and [k_1 , k_2] if there exist two positive numbers α and β such that for all f_1 (e) in [k_1^* , k_2^*], f_2 (c) in [k_1 , k_2] and all $t \ge 0$

$$|c(t)| \le \alpha \mu + \beta |c(0)|$$

and

$$\lim_{t \to \infty} (t) = 0$$

- ① This condition was given by Aizerman and Gantmacher in reference 5.
- ② Definition of absolute stability for autonomous systems was given by Aizerman and Gantmacher in reference 5.

where μ is the same as defined in (a) and (b).

3. THEOREMS

Theorem I

The non-autonomous control system (Fig. 3) subjected to a strongly bounded input r_1 (t) is absolutely stable in the sector[k_1^* , k_2^*] if there exists a non-negative q such that the expression $1/k_2^*$ H + (1 + sq) G (s) is positive real, where $k_2^* > k_1^* \ge 0$ and H > 0.

Theorem I

The non-autonomous control system (Fig. 4) subjected to a strongly bounded input r_1 (t) is absolutely stable in sectors $[k_1]$, k_2 *] and $[k_1]$, k_2] if there exists a non-negative q such that the expression $1/k_2k_2^* + (1+sq)$ G (s) is positive real, where $k_2^* > k_1^* \ge 0$, $k_2 \ge k_1 > 0$ and f'_2 (c) > 0.

Theorem II

The non-antonomous control system (Fig. 3) subjected to a monotonically bounded input r_2 (t) is absolutely stable in the sector[k_1^* , k_2^*] if there exists a non-negative q such that the expression $1/k_2^*$ H + (1+sq) G_1 (s) is positive real, where $k_2^* > k_1^* > 0$, H > 0, $\lim_{t \to \infty} r_2(t) = 0$ and, G_1 (s) which has a pole at the origin.

Tneorem IV

The non-antonomous control system (Fig. 3) subjected to a monotonically bounded input plus a strongly bounded input $[r(t) = r_1(t) + r_2(t)]$ is absolutely stable in the sector $[k_1]$, $[k_2]$ if there exists a

non-negative q such that the expression $1/k_2^*$ H + (1+sq) G_1 (s) is positive real, where $k_2^* > k_1^* \ge 0$, H > 0, $\lim_{t \to \infty} (t) = 0$ and G (s) = G_1 (s) which has a pole at the origin.

Theorem V

The autonomous control system (Fig.4.with r (t) $\equiv 0$) is absolutely stable in sectors[k_1^* , k_2^*] and[k_1 , k_2] if there exist a nonnegative q and a $\lambda \leq k_1 k_1^*$ such that the expression $1/(k_2 k_2^* - \lambda) + (1 + sq)$ G (s, λ) is positive real, where either k_1 or k_1^* is nonnegative and that G (s, λ) = G (s) /[1+ λ G (s)].

Theorem VI

The autonomous control system (Fig.4. with r (t) $\equiv 0$) is absolutely stable in sectors $[k_1^*, k_2^*]$ and $[k_1, k_2]$ if there exist a real q and a $\lambda < k_1 k_1^*$ such that for all ω , $1/(k_2 k_2^* - \lambda) + \text{Re} [(1 + j\omega q) G(j\omega, \lambda)] \geq \delta > 0$, where either k_1 or k_1^* is non-negative and $G(s, \lambda)$ has no poles with positive real parts, with any poles on the imaginary axis being simple and having positive residues.

Corollary

If q can be set to zero, then all conditions being imposed on \dot{r}_1 (t), \dot{r}_2 (t) and f' (c) in Theorem I through N can be removed.

4. ILLUSTRATIVE EXAMPLES

Example 1

Given a control system shown in Fig. 3. with r_1 (t) = $100e^{-0.11}$

sint, f_1 (e) = $e^3 - 5e^2 + 7e$, H = 0.5 and G (s) = (s+1) / (s² + s+1) + s/ (s² + 1). In order to apply the theorems, we make the following investigations.

(1)
$$|\mathbf{r}_1|(t) | \le 86 = \mu_1$$
,
$$\int_0^{\infty} |\mathbf{r}_1|(t) | dt = (100/1.01) \cosh (0.1\pi/2) = 638 = \mu_2$$
 and
$$\int_0^{\infty} |\dot{\mathbf{r}}_1|(t) | dt \approx 100 \operatorname{csch} 0.1\pi/2 = 637. \text{ Hence } \mathbf{r}_1|(t) \text{ is strongly bounded with}$$

$$\mu = \max[86, 638, 637] = 638.$$

(2)
$$k_1^* = \min[e^2 - 5e + 7] = 0.75$$
 and $k_2^* = \max[e^2 - 5e + 7] = \infty$.

(3) For q = 0 and $k_2^* H = \infty$, we have $1/k_2^* H + \text{Re}[-(1 + j\omega q) G (j\omega)] = [-(1 - \omega^2)^2 + \omega^2]^{-1} \ge 0$.

This system is absolutely stable according to Theorem I. The computer results of the output c (t) and the error e (t) are shown in Fig. 5.

Example 2

Given a control system shown in Fig.4 with r_1 (t) = $100e^{-0.2t}$ sint, f_1 (e) = 0.5e (1 + 0.9cos10e),

$$f_2$$
 (c) = c + 0.9 (1 - cose)
and G (s) = $(s^2 - s - 1) / (s^3 + 3s^2 + 4s + 2)$.

- (1) r_1 (t) is strongly bounded.
- (2) min[f_1 (e) /e] = 0.05 = k_1 *

max[
$$f_1$$
 (e) /el = 0.95 = k_2 *,
min[f_2 (c) /cl = 0.345 = k_1 and
max[f_2 (c) /cl = 1.655 = k_2

(3) $k_2 k_2^* = 1.57$, take 1.6. It can be shown that for $0 \le q \le 0.5$, $1/k_2 k_2^* + (1 + sq)$ G (s) is positive real.

Hence the system is absolutely stable according to Theorem []. The computer results are shown in Fig. 6.

Example 3

Given a control system shown in Fig. 3. with r_2 (t) = 10 (1 + t)^{-1/n}, n > 0, f_1 (e) = $e^3 - 5e^2 + 7e$, H = 2 and G (s) = G_1 (s) $= \frac{1}{s} - \frac{s^2 + s - 1}{s^3 + 3s^2 + s + 1}.$

- (1) r_2 (t) is a decreasing function of t and \dot{r}_2 (t) = -10/n (1 + t)^{1+1/n} is an increasing function. Hence r (t) is monotonically bounded.
 - (2) $k_1^* = 0475$ and $k_2^* = \infty$.
- (3) For $k_2^* = \infty$ and $q \ge 3$, $1/k_2^* H + (1 + sq) G_1$ (s) is positive real.

The system is absolutely stable according to Theorem \coprod . The computer results for n=2 are shown in Fig. 7.

Example 4

Given a control system shown in Fig. 3. with $r(t) = r_1(t) + r_2(t)$ where

$$\begin{split} r_i & (t) &= 10u \ (t) \ -5u \ (t-2) \ -12.5u \ (t-4) \\ &+ 10u \ (t-6) \ -2.5u \ (t-8) \ and \ r_2 \ (t) \ = 10/ln \ (100t+2) \,, \\ f_i & (e) &= 0.5e \ (1+0.9cos \ 10e) \,, \ H=1.6 \ and \end{split}$$

$$G(s) = G_1(s) = 1/s + (s^2 - s - 1) / (s^3 + 3s^2 + 4s + 2).$$

- (1) r_{1} (t) is strongly bounded and r_{2} (t) is monotonically bounded.
 - (2) $k_2 k_2^* = 1.52$.
- (3) For $0.25 \le q \le 0.5$, $1/k_2 k_2^* + (1 + sq) G_1$ (s) is positive real.

The system is absolutely stable according to Theorem IV. The computer results are shown in Fig. 8.

Example 5

Given a control system shown in Fig.4.with r (t) $\equiv 0$, f₁ (e) = 0.2 (e cos e) -0.75e,

$$f_2$$
 (c) = c and G (s) = $(2s^3 + 4s^2 + 2s + 2) / (s^4 + 4s^3 + 6s^2 + 4s + 3)$.

- (1) $r(t) \equiv 0$ implies that $\mu = 0$.
- (2) min[f_1 (e) /el = -0.95 and max[f_1 (e) /el = -0.55, $k_1 = 1$, $k_2 = 1$. That is $k_1 k_1^* = -0.95$ and $k_2 k_2^* = -0.55$.
- (3) Assuming $\lambda = -1$, we have $G(s, \lambda) = (s+2) / (s^2 + 2s + 1) + s/(s^2 + 1)$.

It can be shown that 1/ $(k_2 k_2^{\ *} - \lambda)$ + (1+sq) G (s, $\lambda)$

科学论文