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On Minimax Invariant Estimation of
Scale and Location Parameters

1 Introduction

l.et X be a random variable whose distribution function F(z) is known, By changing the
origin and scale we modify linearly the results of measurements. This leads us to consider a

family of distributions F(LZ—[)) } , where a > 0 and b are parameters — the so-called scale

and location parameters,

The problem of estimating these parameters has been investigated by many authors since
1937. Roughly Speaking, up to now the efforts have been centred on two points: the seeking
of minimax invariant estimators ( MIE) and the admissibility of such estimators. The second
point has been investigated more successfully in the case when only a location parameter is
present (see [4],{5],[6],[10],[13], [14], and [15]). As for the problem of existence of
MIE, the present situation is that although a number of results in various particular cases
were obtained (see [3],[4]1,[6],{7],[8], and [12]), the general case that two parameters
are present simultaneously has not yet been worked out.

In this section an important paper by J. Kiefer should be here mentioned, In [11] Kiefer
developed the general theory of invariance principle in the nonsequential case. His result is so
general that the problem of existence of MIE may be considered as a solved one, at least par-
tially., However, the solution by his theory, it seems, cannot be considered a rigorous and
complete one, for, first, the main theorem of [11] states only that the restriction to invari-
ant estimators does not enlarge the maximum risk and the problem of existence of MIE is still
left open; second, little attention was paid in the paper to the measurability questions. So,
although it may happen that in some cases MIE can be formally constructed, a verification is
needed 10 insure the measurability of the estimator obtained. It goes without saying that
from the rigorous mathematical viewpoint, it is very desirable to have these problems clari-

fied. Third, Kiefer’s theory does not apply to discrete distribution case. Owing to these
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reasons, it seems worth while to give a rigorous treatment of this problem.

The purpose of this paper is to prove the existence of MIE of scale and location parame-
ters. For simplifying the wording, we shall discuss in detail only the one-dimensional case.
The extension to multidimensional case will be indicated in the last section.

The case where the location parameter is the only one present may be treated in a some-
what similar manner (see in this connexion an article published by the author in Acta Math-

ematica Sinica, Vol. 14, No. 2, pp. 276~290).

2 The Main Results

Let X = (X,, -, Xy) be a random vector with a known distribution F, and lete =

(1, -=-, 1). Then for any a >> 0 and b, aX =+ be has a distribution function
_ r— be
F(z|a,b) = F(—a )

Now we draw a sample x from the population F(x|a, 6), and want to make some estimation
of the parameter vector (a, 5).
Let V(a, b; di, d;) be the loss function. We impose the natural condition d, =0, and

suppose that V' is invariant, i.e., for any ¢, > 0 and ¢,, we have
V(ac, , bey + 25 dyey, dicy +oe) = Va, b; dy, d;).

This is equivalent to the condition that there exists a function W = W(t,, t;) defined on set
S =1{(t, t;) | t; = 0} such that

c_il’dz—b)-

a a

V(a, b; dl,dz>=w(

In what follows the term “loss function” will be understood as the function W, and not V it-
self.

We call “estimator” any Borel measurable function defined on Ry with range 3. The
class of all estimators will be denoted by . An estimator (u, v) is called invariant if for
(¢, d)€3°(Z°— interior of 3) we have

u(cx +de) = cu(x), vicxr +de) = colx)+d.

Let (4o, v ), whereu,{(z) >0, be a fixed invariant estimator. For any (u, v) € u, we define

_ u(x) _ v(x) — v (x)
Gy =T

then (s, r)€ 4, and the correspondence between (u, v) and (s, ) is one-to-one. A necessa-

ry and sufficient condition that (u, v) is invariant is that
slex +de) = s(x), rler +de) = r(x) (1)

for any (¢, d)€3°. In what follows we shall often use (s, r) instead of (u, v), and the sub-
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class of all functions in p satisfying (1) will be denoted by 9.

The risk function R(a, b; u, v) may conveniently be expressed as a functional p of

(a, b) and (s, r). Thus
pls, rya, b) =p(s, rya, by F, W)
o u(xr) v(x)—=6 xr—b
_JW< a ’ a )dF< a )

—[Wlstay = be)us(3), rlay + bedu(3) + v, () 1A ().

Notice that if (s, r)€ 9, p(s, r; a, b) would be independent of (u, b) and might justifiably

be written as p(s, r). Let

V=V(F, W)= inf sup p(s, rja, b5 F,W), (*)

Lered o mes

V=V(F, W)= inf sup p(s, ry a, by F, W),

(o €p (4 pest

V=V(F, W) =sup inf |o(s, r; a, b; F, W)dG,
- - [

{s, rie s,

where G is an a priori distribution on 3°. We remark that in the foregoing expressions it is
unnecessary to require that F is a probability measure.

It is easily seen that V. >V = V. What we want to prove is V = V and the inf standing
on the right hand of ( x ) is attainable. This will be proved in this paper under mild restric-
tions, We now formulate the conditions imposed on the loss function W .

1°. W is continuous on 3°,

2°. W(1, 0)=0.

3°. For any ¢, 22 0 fixed, W is nonincreasing in ¢, for z, < 0 and nondecreasing in t, for
t; 220. For any ¢, fixed, W(¢,, t.) viewed as a function of ¢, nonincreases for 0 <t < 1and

o

nondecreases for ¢, 2> 1, Notice that from 2°, 3° it follows that W is nonnegative on 3.

47. The relation

Wi(t, t.) > oo

. 1 .o . . . o . .
holds uniformly as . +t +1[t, | >oc. This in conjunction with 3° implies that Wi(t, 1) =
1

oo whent, = 0,

In many cases it is reasonable to assume that the loss remains bound as the error of esti-
mation remains bound. Accordingly we impose the following conditions.

4:. W is continuous on 3 and W(¢,, #,)—>o= holds uniformly as ¢, +| . | - o=, The im-

portant quadratic loss function
W, ) = (1, = 1) + 8

satisfies this condition.

45. W is continuous on 3, and
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W(t,, t,) »>a< <

uniformly as ¢, +]| t, |—> oo, An example of such a loss function is furnished by W(¢ , t,) =

[ 1= |+ 2]

ithg = 1.
o+ e
Now we turn to the distribution F. We assume that it satisfies the condition;
F(A) =0, (2)
where
A=z |lx = = x4l (3)
It is easily seen that uA +be = {(ax, +b, -, axnv+b) | (2, -, xv) € A} = A for any

(a, ) €3, and so P{(ax +be) € A} = F(A) = 0. This being the case, the invariant esti-

mator (u,, v,) with u, > 0 exists and may be taken as

w(r) = max |z, —x; |, v(xr) = r.

1<Cic j<EN
The following may be said about the condition (2). Suppose that («, ) is an invariant

estimator and x = (x,, -+, x,), then it is easily seen that
u(xr) =0, v(ix) = x,.

But under condition 47, the risk of any such estimator is oo if F(A) > 0. Therefore, in this
case, the condition (2) may be considered as necessary. The situation becomes more compli-
cated when 4; or 4; holds. Fortunately the most important case where the condition (2) fails
is that F is a discrete distribution, and we shall prove that in this case, the MIE exists
under 45.

The main results of this paper may be summarized in the following two theorems:

Theorem 1  If the loss function W satisfies conditions 1°, 2°, 3° and one of 43, 4 , 45,
and if the distribution F satisfies (2), then there exists an MIE of the scale and location pa-
rameters.

Theorem 2 If W satisfies 1°, 2°, 3°, 4; and if F is discrete on A, i. e., there exists a
denumerable set A; C A such that F(A,) = F(A), then the conclusion of Theorem 1 still
holds true.

In practical applications, the case most commonly dealt with is that F is the direct prod-
uct of N one-dimensional distributions, all of which belong to the continuous of discrete

type. In this case, the condition of F in the above theorems is satisfied.

3 Some Lemmas

The proof of the above theorems are preceeded by several lemmas, which are discussed
in the present section. Some of them are of general interest.

Lemma 1 Suppose that the probability distribution F satisfies (2) and the condition
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Flix | (uw(x), vo(x)) € L,t) =1, (4)

where (u,, v,) is a fixed invariant estimation with u,(x) > 0 for all x, and

)
14,,,: {([1,[2)(%<[1<m, ![2 ‘<m>

j

Furthermore, we assume that one of the following conditions is satisfied by the loss function
W

(1) W satisfies 2°, 3°, 4] and is finite on 3°;

(II) W satisfies 2°, 3%, finite on =, and limW(¢t,, #,) = oo uniformly, ast, +| t, |- oo
(Il ) W is a bound and Borel measurable function on 3.

Then we have
V(F, W) =V(F, W),

This lemma® may be considered as an extension of the one proved by Girshick and Sav-
age (see lemma 3.2 in [3]).

Proof For anyq¢>1, (a, b) € 3—L,, we define

(a, b)" =(a",b") (5)

o)

as the point on L, with shortest distance to (a, 4). For any (a, b) €L, and (¢, dYEL,,,
we hﬂve

Wlac, be +d) = W(a'c, b c+d),

where (¢*, 6" ) is determined as above with ¢ = 2m?,

Now define

W(t L] t2)) fOl’ (t ’ t ) E' I‘m 2m? ’
W'(Zl’tg):{ 1 1 2 ( 1)
W', t7), for (4, 1) € 35— Loem? o1y,
where (1, #; ) is determined by (5) with g = m(2m® +1). From the conditions imposed on
W, it follows easily that W* is a Borel measurable bound function, and W* < W,

By the definition of V, for anye > 0 and T > 1, there exists (s, r) € u such that
V(F, W")+¢

> ;—(JT)L W CsCay + be o (5, rlay +be s () + v () 14F(y) L guds

1
= ?T(ﬂde(y)Jl«,W* [sCay +bedus(y), rlay +be)us(y) + v, (y)] ~i dadb. (6)

@ The author is indebted to Comrades Cheng Ping, Chien T T, and Tao Po for their assistance in the
proof of this lemma,
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Here o(T) = L ;lzdadb = 4Tlog T. But
T

dadb

j W* [s(ay +be)us(y), rlay +be)u(y) + v (y)]

;JT ——dajp%m W [s(ay +be)u,(y), rlay +be)u, (y) + v, (y)]db

T a —Tav, ()

—2 ‘ 'Uo(y) ‘ TM,
where

M= W' (1, &) =sup {W(ty, &) | (1, 2) € Lpmter) | < o0,

('1 €X

(7)

Also, because of condition (4), we may restrict ourselves to those values of y, for which

(uo(y), ve(y))EL,. Thus from (7) we have

dadb

J W [s(ay +be)uo(y), r(ay +be)u,(y) + v (y)]

(y)T da T—-uvo(y)
/J daf W sy +be)uo (3), rlay + be)us () + v () db

(y)T]‘l a J-T-ay,(y

ZTMJ'VT gc_l

1/mT Q

— 2mTM — 2TMJ ‘i“

dadb

= [, W [s(ay +be)us (), rlay +be s () + u:(5)]

—2mTM(1+ 2 logm),

(8)

where E = {(a, b) | (auo(y), b+av,(y)) € Lr|. Making the transform a’ = au,(y), ¥ =

ave(y) + b and rewriting (a, b) instead of (a’, '), we obtain
W sty + b dua(3), rlay +bedus (3) + (5] Ldacs

“L [ G )y+( “L"fﬁ)e%ﬂﬂ

,{ﬁ&_}w = “;’0°((j)))e}uo<y> +(y) | Ldads,

Define
o) = s{ s+ (1= 2 )
Fulz) = r{uo?z)r+ (b_ alZO((If)) >€)

(9)

(10)

Then it is easy to verify that (5, , 7y )€ 9. Therefore, from (6), (7), (8), (9), and (10),

it follows that
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VF, W) 4e>—- inf jW*[su,,(y)uz,(y),a,,<y>u@<y>+vo<y>1dF<_y>f Ldads

<F( T) (u, es" by
~ ﬁZmTM(l + 2log m)
= inf (W (0w (3 (9w () + v (1) 1dF() —e(T). (1)
(s, ri €5,
where
lime(T) = lim mM (1+ 2log m) = 0. (12)
T 7. 2log T

But it is not difficult to show that
it (W Ts)u (), H3)u () + () JAF()
= infUW' [s(y)u(3) s r(us(y) + v (3)JdF(y) | (5. r) € 85
for any y, (s(y), r(y)) € Luz ). (13)

In fact, for any (v, r) €9, let us define a pair of functions s,, r, in the following manner;

(s(x), r(x)), for (s(x), r(x)) € Loz
(si(x), n(x)) = . . _ (14)
((s(x))", (r(2))"), for (s(x), r(x)) € La,z.

Here ((s(x))", (r(x))" ) is determined from (s(x), r(r)) by means of (5), with g = 2m*.
Clearly we have (s,, r,) €8, (s,(zx), r(x))€ L, for every x, and

W [si(x)uo(x), ri(x)us(2) + v (2) T << W [s(x)uo(x), r(2)ue () + v () ].
Therefore

[W 5w () r () (5) + 0. (3) dF ()

< W L u () (9w (3) + 0 () 1dF (),

and (13) is proved. But we have (si(2)uo(x), ri(x)u,(xr) + v,(x)) € L., when
(si(x), n(x))€E Ly, and (uy(x), vo(x))EL,. So, from the definition of W it follows at

once
“The right hand side of (11)”
> inf [WE()u(3) . r(5)u(3) + 0 () JdF () — e(T)
= V(F, W) —¢e(T). (15)
From (11) and (15) it follows that
V(F, W' )Y4+e=V(F, W) —¢(T).

But obviously V(F, W) = V(F, W~ ). Inserting this into the above inequality and letting
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T—>co and then e—=0, we obtain V(F, W) = V(F, W). As the reverse inequality holds true
in any case V(F, W) = V(F, W) follows and the proof is terminated.

In case W is bound, it follows by the same argument as used in [3] that V(F, W) =
V(F, W), provided F satisfies (4). Nevertheles, it seems impossible to prove the existence
of MIE without some additional assumptions.

Lemma 2 (A) Suppose that W == 0 is continuous on 3°, W(0, t,) = oo and W(¢,, t;)

—»oo uniformly as —tl~+11 +| t, | =>oco. Let u be a measure defined on the g-field # of all Borel
1

sets in £° such that 4(B) < oo for any closed bound set B, then

lim inf [ W, ot +t)du= inf [ Wlat, b +1)du. (16)
L, s

ey nes’ (a, b€’

(B) Suppose that W = 0 is continuous on 3, W(¢,, t;) = a <{ o© uniformly as ¢, +| 2, |
—> oo, and y is a measure on % such that u(C) < oo for any bound Borel set C, then (16)

”

holds true, but the symbol “ inf ” should be replaced by “ inf ”.

(a, )€’ (a, YES
Proof We shall prove only (A), for the proof of (B) is essentially the same. Without

loss of generality we can assume that m takes only positive integer value. Write
hla, 0) = | Wiat,, b+ 1)

It is easily seen that h, is continuous on 3°. Clearly we may assume that x(3°) > 0, so

#(L,.) > 0 for the sufficiently large m. For such an m, W(¢,, ¢, )—=>oc uniformly as %—f—zl +
1

| t, |-=cc and h,, attains its minimum at some finite point (a,, b,) € 3°. Writing ¢, —

hw(@m, bn), we have c; < ¢; < +++ and lim ¢,, = ¢ << oo exists. Two cases may occur: ()

hia, b) = LOW(atl , Bt +t,)dg=oco, and ([ ) 23 o0, We consider only case ( I ) as case

(II ) may be discussed in a similar way.

We have to show that ¢ = oo, Suppose, on the contrary, that ¢ <Z co; then the sequence

{(al +a, +| b, !)} must be bound, for otherwise we may assume that Iim( 1 + a, +

m m—- . m

| b, [) == oo, Then for T sufficiently large (so as to make p(L1) > 0), one has

0 > ¢ = limc, = lim| W(ant,, bat, +t;)du
Ly

meoc

>JL lim inf W(ant, , buts + 2, )dpe = oo
T

This contradiction proves the boundness of

(al +a, +| b, | ) } Therefore without loss of

generality we may assume that (a,, b,)—>(a,, b, )€ 3°. For any fixed T and m > T, we
have
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J‘ W(a,,,ll y bmtl + t’_’ )d/l < JI W(am[l s bmtl - [2 )d;j = Con g c < Cre
Ly m

I.et m—co and then T—>20, Then it follows that h(a,, 6.) << ¢ <7 22, Which contradicts h =
o, and the lemma is proved.

Remark 1 Suppose that W is a strictly convex function on X and y is a nonzero measure
on #. Then it is easily seen that h(a, b) = J Waty, bty +t.)dy is strictly convex on the
-

convex set H = {(a, b) | h(a, b) << ccl. In case H is not empty, it follows that the point at
which A attains its minimum is unique.
Before formulating l.emma 3, it is convenient to introduce the following notion: Let AC

R, be a bound set. Define
a, = sup 1“1 i a = (a;, ", a,) € A
The intersection of A(closure of A) and the hyperplane x; = «, is a bound set A,. Let

fay 1a= (ay, =, ar) € A, L.

a, = sup

Suppose now that the numbers @, , -+, @,{p < £ — 1) have already been determined. Let A,

=AN i(ar, , a) |l a =a, i << pl and @,., = sup ia,. | a = (a1, -, a;) € A,}. The

pointa = (a,, -, a ) thus obtained clearly belongs to A and will be denoted by
a=supaifAl.

Lemma3 Let ¢ (y) = (¢"(y), -, ¢’ (y)), i=1, 2, - be a sequence of Borel
measurable functions defined on a Borel set ECR,. Suppose that for every y € E the set
A, ={¢"(y), 1= 1, 2, ---| is bound; then the function f defined on E by the formula
f) =(fi(y), =, fi(y)) = supalA,}is Borel measurable.

Proof The case £ = 1 being a well-known result, we proceed to prove the general case

by the method of induction. We first show that for any real «

vyl y€ E;fi(y) > ul

::ZIIZ{ﬂye&¢wux>mur75dzlwuk—h¢ww>u+%}

n=1 m=1 g-=1

(17)

In fact, assume that y, belongs to the left hand of (17); then filye)—u=6> L for n, suffi-
n

ciently large. Let m be arbitrarily fixed. Since f(y,) € Z\ , an integer 7,, may be found such

that ¢’ (y,) € V, where V, is a sphere with a centre S (y:) and a radius ¢ <

e 1 . . .
mm(;); , 6 — n—) Conscquently we have shown that there exists an integer n such that to
0

every m there corresponds an integer 7,, such that

) 1
B (30 > fuly) = d = 1, e k=1, g (3) B (18)

ny
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where y, belongs to the right hand of (17). Conversely, if y, belongs to the right hand of
(17), then an integer n, exists such that for any m, an integer i, satisfying (18) may be
found. The sequence {¢'’ (y,)! being bound, there exists a subsequence {¢'~.’ (y)} conver-
ging to a pointa = (a,, -+, a;). Clearly

1
ad?fd(yo), d=1, -, k—1; ap =2 u+ —.

Ny

As the reverse inequality a; << fu(30), d =1, -+, k— 1 follows easily from the definition of
“sup ¢”, we havea, = f,(y,) ford =1, ++, k—1. Therefore fi(y,) = a; >> u+1/n, > u
by the very definition of “sup a”. This shows that y, belongs to the left hand of (17) and
concludes the proof of (17).

Suppose now that Lemma 3 holds true for £ — 1 instead of #; then the right hand of (17)
is a Borel set, and this proves the measurability of f;. The truth of Lemma 3 for  follows,
and the proof is terminated.

Lemma 4 Suppose that a sequence of functions {¢ (y) = (¢{” (y), -, o' (), i=
1, 2, -} defined on a Borel set E C R, satisfies the condition of Lemma 3. Then there exists
a Borel measurable function ¢(y) = (¢ (), -, @ (¥)) defined on E such that for any y €
E, a subsequence {i,| (depending, in general, on y) of positive integers may be found such
that ¢(y) = limg™’ (y).

Proof Fork =1 the lemma follows by taking ¢(y) = lirfLS,qu’(") (»). The general case

may again be treated by the method of induction.
Foranyy € E, letA, =1{¢"“(y),i=n,n+1, |, n=1, 2, ---. By Lemma 3, the
functions £ (y) = (f{"(3), =, fi"(y)) = supafA, }, n=1, 2, - are Borel measurable

on E. Clearly, for any y € E, limf{” (y) exists. Consider the sequence of functions defined

on E by g (y) = (f"(y), =, fi"(y)), n=1, 2, «-. This sequence satisfies all condi-
tions of l.emma 4. Therefore by induction hypothesis there exists on E a Borel measurable
function g(y) = (g:(y), -+, ge(¥)) such that forany y € E, a subsequence { g™’ (y)! tend-
ing to g(y) exists, Now define

o(3) = (¢ (y), =, @(y)) = (nlirgfﬁ")(y), g:(y), =, &(y))

and proceed to show that it satisfies all conditions of Lemma 4. Since the measurability of ¢
follows from g, we have only to show that for any y € E, there exists a subsequence
{¢"”(¥)! tending to ¢(y). Suppose on the contrary that for somee >0, ¢/ (y) EVasi>
n,, where V is a sphere with a radius ¢ and a centre ¢(y). From the definition of “sup a” it
then follows that £ (y) = supa{A, | € V for n > n,. This is a contradiction since for any
y we have g (y) = g(y), and thus £ (y) —@(y) as s—>o00, The proof of Lemma 4 is con-
cluded.

Lemma § let P(Z, B) be a Borel measurable probability defined on ID X %, where
D C R, is a Borel set. Suppose further that the loss function W satisfies the conditions of
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LLemma 2 (A); then for any m, 0 < m < oo, there exists a Borel measurable function

(4w, b)) mapping D into 3’ such that

J Wa, ()t bu()t +1.)P(z, do) = inf f War,. bt +1,)P(x. do), (19)
L, -

(a, yes'J 1

where dw = d(¢t;, ;). There exists also a Borel measurable function (g, ) mapping D into

3Y such that

J‘)W(a(z)tl, b(2)t, +1,)P(z, dw) = inf JTUW(azl, bty +1,)P(z, dw).  (20)

(u, H)eZ

If the function W satisfies the conditions of Lemma 2 (B), then the above conclusion re-

mains true, only that the symbol “ inf " should be replaced by * inf ”, and the functions
(u, bre 5" (u, BYES

(dmy b)), (a, b) will map D into 3,

Proof We shall treat only the first case for in the second case the proof remains essen-
tially unchanged.

The set B, = {z | 2 € D, P(z, L,,) =0} is a Borel set. Ifz, € B,,, then any point in
2® may be chosen for (a,,(2,), #,(2,)) in (19). So without loss of generality we can assume

B, = . Define
Hala, b o) = [ Wiat, b +0)P(z, do).
L,

By a well-known fact of measure theory, H, (a, b; 2) is Borel measurable on D for any fixed
(a, b) € 3°. The continuity of W implies the continuity of H,(a, 6; z) in (a, &) for any
fixedz € D, and we have inf H,(a, b; z) = inf H, (a,, b,, z), where {(u,, b,)! is the

(a, BYES" n

sequence of all rational points in 3°. In this way, we have proved that the right hand of (19)

is Borel measurable. Now lete > 0 be given, and define

E.=1z1z2€ D, H.(a,, b,, 2) < inf H,(a, b, 2)+el,n=1, 2, -

(¢, 0)e 3"

Clearly, {E,.| is a sequence of the Borel set and D = ZEM. Write EY, = E,,, -, E}, =

n=1
E.—(E,+ - +E, ), ; then the sets of |Ey. | are pairwise disjoint. Now define a se-

quence of functions on D as follows:
(e (2), bu (2)) = (a,, b,), forz € E\, n=1, 2, -

These functions are Borel measurable on D. If we choose a sequence {e, |, € ¥ 0, and if for

every s we define a function (a,, , bne,) as above, then for any z € D we have

inf H,(a, b; 2) < Hy(am, (2), b (2); 2) < inf H,(a, b; z) +e. (21)

(u, yes" (a, ) 3"

Setting s — oo, we obtain
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limH, (@, (2), bn, (2); 2) = inf H,(a, b; z). (22)

(a. B)ES
Since the right hand of (19) is finite and since by assumption P(z, L, ) >0, by an argument
similar to what was used in the proof of l.emma 2, for any fixed = € D, the sequence
{{ame, (2) + am (2) +1 b (2) 1)1Z) is bound, and therefore there exists a compact set J,C
3" such that (@, (2), b (2)) € J.for all s. By Lemma 4, there exists a function on D such

that for any * € D a subsequence {s;! can be found to satisfy the relation

lim(a,,,‘!! (z), b’"‘s, (2)) = (a.(2), b.(2)).

.00

Clearly a,,(z) > 0 for all z. Owing to the continuity of H,, (a4, b; z) in (a, b), from (21)
and (22) it follows at once that H,(a.(z), b,(2); z) = inf H,(a, b; z). This proves (19).

(a. YES
We now proceed to prove (20). Write

H(a, b; z) = L,W(azl, b, +1,)P(z, do).

By (16) and the Borel measurability of inf H,(a, b; 2) it follows that inf J” W(at,, bt, +

(a. €S (a, ey
t.)P(z, dw) is Borel measurable. As before we may assume that B= {z|z¢€ D), H(a, b; z)

= oo is empty.
Now let (¢4m, b.), m = 1, 2, :-- be the functions satisfying (19) found above. For any
fixed ¥ andm = &',

J.L'W(a,,.(z)tl, bo(z)ts + 1) P(2, dw)

gL W(a,(2)t, b (2)t, +1,)P(z, dw)
< inf H{a, b; 2) < oo, (23)

(a, )€Z°
and as before for any fixed z € D there exists a compact set J,(C3° such that (a,(2), b,(2))
€ J. for all m. By Lemma 4 there exists a Borel measurable function (a, ) such that for any

z € D a subsequence {m,} can be found to satisfy
lim(an, (2), b, (2)) = (a(z), b(2));

clearly, a(z) > 0. From (23) it follows that

JL, W(a(z)t,, b(2)ts + 1) Pz, do)

b

= lim L,W(ami(z)h s b (2)0 + 1) P(2, dw)

oo

< inf H(a, b; z). (24)

(a, Y€3°

Setting b’ —~co, we see that (20) follows from (24). Lemma 5 is thus proved.

Remark 2 If W is strictly convex and B = (J, then it follows from Remark 1 and
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l.emma 5 that the function (a, #) found above to satisfy (20) is unique.

4 Proof of Theorem 1

Define a function z on Ry — A ;

. . LT,
() = (z,, sign(x, — 1), — L, J =2, -, N>,
! X, — X
where 7, = minlj | &, ¥ x,. 7 =2, -+, Ni. It is readily seen that z is a maximal invariant,

and therefore the condition (s, r) € ¢ is equivalent to the condition that (s, r) depends only
on 2. In such a case, we shall write s(x) = s(2(x)) for convenience. It is easily seen that 2
is a Borel measurable function.

lLet P(z, B) be the mixed conditional distribution of (u,, v, ) (see Section 2) given
2(X), the underlying distribution being F (see, for example, p. 361 in [16]). Suppose that
(s, r) €9; we have

EciWls(X)u. (X), (X u(X)+v(X)] | Zt
= EriW[s(Z2)u(X), r(Z2)u,(X) + v, (X)] | Z|

- J‘_UW[S(Z)U (20 6]P(Z, dw).

By Lemma 5, there exists a Borel measurable function (s,, r,) such that
w(Z) = Ep{W[so (2D uy(X), ro(Z)uc(X) + 0, (X)] | Z}
—[ WL (D)t n(2)0 + £ 1P(Z, du)

= inf [ Wlaty, b+ 0 1P(Z, da),

(a. 3"
Therefore, for any (s, r) € 9 we have

oo ) =Ee| [ WIS2)t, (200 +£1P(Z, do))

s

SE [ WD, r(2) +1P(Z, du) |

:p(so, ro). (25)
This leads to

V=V(F, W)= inff;(s, r) =p(so, rn) = Epiw(Z)1.

(s. re

Now let m be a positive integer, define a measure F

m .

F.(C) = F(CN lx:(uy(x), v(x)) € L,}),

and let A(x, m) be the characteristic function of the set | r | (ua(x), vo(x)) € L., }; then for

any (s, r) € 9, we have



