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Preface

Das Ziel der Wissenschaft ist einerseits, neue
Tatsachen zu erobern, anderseits, bekannte unter
hoheren Gesichtspunkten zusammenfassen.
S. Lie
\
One of the principal objects of theoretical research
is to find the point of view from which the subject

appears in its greatest simplicity.
JW. Gibbs

Good mathematics = down-to-earth mathematics.
A. Andreotti

Everyone knows that the theory of PDE systems is enormously rich
in results—but what about foundations? This monograph describes one
approach, but there is no claim that it is the only one, or that it is the
best possible; just that there is one, and moreover one that has been
around for a long time without having been as recognized as it deserves.

The study is restricted to local solvability. If a PDE system S is defined
in a domain D, and if it can be shown that S possesses local solutions at
each point of D, the question of global solvability boils down to whether it
is possible to glue together local solutions in order to form global ones—
in analogy with the cohomology theory for coherent analytic sheaves.
But first of all one has to know that there are local solutions.

A major idea is to regard PDE theory from the point of view of
differential geometry—rather than basing it on analysis, say.

v



vi Preface

To illustrate this, let us first find a suitable angle from which ODE
systems appear in a simple way.

Example. Look for functions y(t), z(¢) satisfying the ODE system
y'=fty2Y.2),
' = g(t,y’z7yl7zl)’ '

With x! :=y, x? ;= z, x3 := y’ and x* := 2/, this goes over into the first
order system

dx!/dt = x3,
dx?/dt = x4,
dx3/dt = f(t,x!, x2, x3, x%),
dx*/dt = g(t,x!, x2,x3, x*).

Therefore the key problem in ODE theory consists in solving first
order systems

dx!/dt = fi(t,x!,x%,...,x"),
*)

dx"/dt = f*(t,x!,x%,...,x").

The classical existence and uniqueness theorem says that for smooth f*
there is precisely one local solution (x!(t),..., x"(t)) satisfying initial data
(xX(to), ..., x"(t0)) = (x},...,xA).

In order to make this conceptually clearer, rewrite (*) as a pfaffian
system:

dx! — fi(t,x)dt =0,

dx" — f*(t,x)dt = 0,
where x = (x!,...,x"). Setting
¢ =dx* — fXt,x)dt for k=1,...,n,
a solution (x!(t),...,x"(t)) is a function whose graph
R; 3t (t,x'(t),...,x"(t)) € R, x R"

is an integral curve of the pfaffian system 6! =--- = 6" =0 on R, x R%.
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The dual of the latter consists of those vector fields
0 - 0

which satisfy 0 = ™(V) = a™ —a- f™(t,x) for m = 1,...,n. Consequently
they are all multiples of the vector field

3 = d
X_§+k§f(t,x)ﬁ.

Then (x!(z),...,x"(t)) is a solution of (*) if and only if its graph is an
integral curve of X.

Thus solving a first order ODE system is equivalent to finding the
integral curves of a vector field. The latter may be done locally by
introducing new coordinates making the vector field maximally simple.

The local rectification lemma. Let

n

9 N
X—a‘i‘;f (t,x)“a‘;c;

be a vector field defined near the origin of R, x R". Then there is a local
diffeomorphism

¢:Ry xR} > R, xR?
with ¢(0) =0 and ¢.(0/0s) = X.
This means that the integral curves of X are given by
y(t,x) = constant fork=1,...,n.

From a technical point of view this theorem is equivalent to the
classical local existence theorem for first order ODE systems—but the
advantage is that it is much more appealing to the intuition (if you agree
with this, read on; otherwise stop right here).

Conclusion. Solving an ODE system is equivalent to rectifying a vector
Sfield—which always can be done locally in the smooth category.

Since this result is most satisfying, it is natural to ask if something
similar works for general PDE systems.

Question. Is it possible to geometrize PDE systems in an analogous way?

The first step consists in rewriting an arbitrary PDE system as a
pfaffian system, or—dually—a vector field system.
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To get the idea, consider a first order ODE:

F(x,y,y)=0.
The graph of a solution is given by

x = (x, y(x)).
Analogously the 1-graph is given by

x = (x, y(x), y'(x)),
the 2-graph by
x> (x, p(x), ¥ (x), ¥ (x)),

and so on. Let us concentrate on the 1-graph, which is a curve in a
3-dimensional space J!(R,,R,) with coordinates x, y and p, say:

X =X,
y = y(x),
p=y(x)
Note that on this 1-graph
| dy —pdx =0.

The one-form 6° = dy — pdx appearing here is called the contact form.
Conversely, let ¢ be a curve in the (x,y, p)-space on which x can be

used as a local coordinate, and suppose that 6° vanishes on c. Then ¢ is
of the form

x > (x, f(x), g(x))
with
0=df —gdx=(f'(x) —g(x))dx, ie, g(x)=f'(x).

But this means that ¢ is the 1-graph of the function f(x).

To the ODE F(x,y,y’) = 0 corresponds the hypersurface M in the
(x, v, p)-space defined by

F(x,y,p) =0.

Clearly solutions of F(x, y, y’) = 0 will correspond to 1-graphs contained
in M, that is, to curves in M satisfying the two requirements

(i) x can be used as a local coordinate on the curve,
(i) 8° = dy — pdx = 0 vanishes on the curve.
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Let us assume M to be smooth, and set
0 .= BOIM = (dy — de)|Ma

so that 6 is a one-form on M. Then the solutions of F(x,y,y’) = 0
correspond precisely to the integral curves of 6 on which dx # 0. If the
latter condition is not fulfilled, the integral curve is said to represent a
generalized solution of the ODE.

Conclusion. The ODE F(x,y,y’) = 0 can be regarded as a manifold M
equipped with a one-form 6. The solutions of the ODE correspond to inte-
gral curves of 6.

Let us now play the same game for a ¢'® order PDE system S in n
independent variables x!, ..., x" and m dependent variables z!, ..., z™:

k5 j
. a 1 n.,1 m, 0"z =
S: F (X geresX 32 400052 ,,m,)_o,

with a = 1,...,4 and k < q. To this set-up corresponds the jet space
J4RY, RY) with coordinates

where p,-’;m,.k is associated to the derivative
okzi
Oxh ... Oxie’
S corresponds to the subset
. 1 1 . k -
M: F(x,.x";z',...,2"%...,p; 4»---) =0

of JA(R},R™); let us assume M to be smooth.
An n-dimensional submanifold N of J4(R%, R™) is a g-graph if and
only if

(i) dx!A---Adx"#£0on N,

(i) N is an integral manifold of the contact ideal 9Ct™™" generated by
the one-forms

dp-l!l - E:IZ=1 p{1i2 dxiz’
dp{l-..iq_| - Z:::l 1”2" dxiq.

Let P denote the restriction of ¢Ct™™ to M. Then



X Preface

the set of solutions of S correspond precisely to the set of n-dimensional
integral manifolds of P on which dx* A--- Adx" # 0.

Define the dual vector field system V = P+ on M by
XeV<<=0(X)=0forall 8 €P.
Then

solving the PDE system S is equivalent to finding all n-dimensional in-
tegral manifolds of V on which dx' A--- Adx" # 0.

Again, suspending the last condition gives generalized solutions of S.
The classical terminology for finding integral manifolds of a pfaffian
or vector field system is to integrate the system.

Conclusion. Solving a PDE system is equivalent to integrating a pfaffian
system or its dual vector field system.

Consider the vector field version: let V = (X 1,...Xy) be the vector
field system generated by the vector fields X 1,--.,Xg4 over the ring of
smooth functions on the manifold M. Shrinking M if necessary, the
X; can be assumed to be linearly independent everywhere. The derived
system V' is generated by the X; and their Lie brackets [X;, X ;l; say that

V' =(Xy,...,X4;Z;,...,Z,). Then the structure equations of V are given
by '

p
X, Xj1=) k2 (modV)  forij=1,.r,
k=1

with certain structure functions cf‘j The latter depend on the basis of V,
and it is natural to choose one that kills as many c{‘l as possible. The
resulting set is called the Lie structure of V, and the general claim is

the integrability properties of V are governed by the Lie structure!

One reason for this is Cartan’s local existence theorem for integral
manifolds. The proof consists of two parts: first linear algebra applied to
the structure equations gives all involutions, and then these are specialized
to integral manifolds by repeated applications of the Cauchy—Kowalewski
theorem. Unfortunately the latter requires power series, and is not valid
in the C*® category.

Questions:

(1) What is required in order to obtain integral manifolds without using
power series?
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(ii) Is there a natural intrinsic property from which more information
than just existence can be derived?

In order to tackle these it is convenient to use the classification of
Drach: any PDE system is equivalent to either a first or a second order
PDE system in one dependent variable.

First order systems in one dependent variable are easily understood
by means of Lie’s structural methods, so the real difficulties start with
second order systems.

The main part of the monograph is devoted to the study of second
order PDE systems in one dependent and two or three independent
variables. When considering these, one is naturally led to the notion of
Monge characteristic subsystems, which in their turn provide the following
partial answer to the questions above:

If a vector field system admits Monge systems with enough first inte-
grals, then it is possible to find integral manifolds without using the
Cauchy—-Kowalewski theorem. Moreover these Monge systems yield a lot
of interesting information beyond that of pure existence—in particular
as regards classifications.

A big surprise is that looking at second order PDE systems in one
dependent variable from this angle, the theory will be dominated by local
Lie groups and Lie pseudogroups.

Extending these methods to the case of more than three independent
variables would be quite complicated, but surely not impossible. And
anyway, who would expect the general PDE theory to be simple?

Most topics treated here can be found in the classical works of: Lie,
Cartan and Vessiot. However, a great effort has been made to present
the ideas in a unified and very simple manner. In order not to obscure
the fundamental issues it has been left to the interested reader to fill in
the details needed to obtain his or her own desired level of rigour.
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1

Introduction and summary

This is the story of a geometric approach to the theory of PDE systems,
initiated by Sophus Lie and developed by two of his disciples, Elie Cartan
and Ernest Vessiot.

In chapter 2 it is explained how any decent PDE system S can be
considered as a submanifold of an appropriate jet bundle. The latter is
equipped with its canonical contact pfaffian system, the restriction of
which to & makes S a manifold with a pfaffian system P or, dually, a
manifold with a vector field system V. The problem of solving the PDE
system S then goes over into that of finding integral manifolds of P (or
V) of a prescribed dimension.

Of the three heroes of our tale, Lie and Vessiot favoured the vector
field approch, while Cartan is the great champion of differential forms.
For our purposes it is important to be able to use both approaches and
to have a complete duality, so that each concept for vector field systems
has a counterpart for pfaffian systems, and vice versa.

As we are only interested in local properties, S is assumed to be a
small open subset of R" (or C"), and V is supposed to be generated by
vector fields X, ... ,X,, independent everywhere on S: V = (Xj,..., X))

The simplest case occurs when V is complete with respect to Lie
brackets, that is,

[Xi,X;]=0 (modV) fori,j=1,...,r.

According to the Frobenius theorem it is in this case possible to introduce
local coordinates x!,...,x" such that V = (8/dx!,...,8/0x9), whence the
integral manifolds are given by

x9t! = constant,...,x" = constant.

With the derived system V'’ being generated by the X; and their Lie

1



2 Introduction and summary

brackets [X;, X;], the Frobenius condition can equivalently be written as
V=V.

The general case with V' 2 V is solved in chapter 3 by means of
Cartan’s local existence theorem. The key idea is to first look for maximal
involutions—with an involution being a subsystem Z of the vector field
system V satifying [Z,Z] < V. Then these involutions are specialized
to complete subsystems, ie., subsystems W of V with [W,W] c W.
Thereupon the Frobenius theorem yields the wanted integral manifolds.

The step from involutions to complete subsystems is based upon a
repeated application of the Cauchy-Kowalewski theorem, which unfor-
tunately requires analyticity.

Often one wants n-dimensional integral manifolds on which @! A--- A
" # 0, where the o’ are given one-forms. If the general n-dimensional
involution Z, satisfies ! A -+ A w"|z, # 0, V is said to be involutive
with respect to the «'. In this case Cartan’s procedure yields integral
manifolds of the kind wanted.

Any vector field system V can be prolonged to a vector field system V()
on a higher dimensional manifold, and this in turn can be prolonged to
V@ and so on. Moreover there is a one-to-one correspondence between
the integral manifolds of V and those of V) for k = 1,2,3,....

Chapter 4 sketches the prolongation theorem of Cartan and Janet,
which says that by a finite number of prolongations it is possible to
conclude either that some V™ is involutive with respect to w! A--- A
w"—in which case the wanted integral manifolds are given by Cartan’s
existence theorem—or that ¥V does not admit any integral manifold on
which w! A+ A" #0.

Drach observed that any PDE system is equivalent to either a first or
a second order PDE system in one dependent variable. In chapter 5 we
take a preliminary look at a single second order PDE in one dependent
variable, and in particular investigate the presence of singular vector
fields—that is, vector fields in V commuting modulo V with a greater
number of vector fields than the average one does. There turn out to be
either exactly two singular subsystems of V, or none at all. If there are
such, the PDE is hyperbolic if they are different, and parabolic if they
coincide.

These observations give rise to the notion of Monge characteristic
subsystems of the vector field system V: a subsystem M of V is Monge if

(i) M is singular,
(iil) M NZT # 0 for any maximal involution Z of V, and
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(iii) M N W is complete for any maximal complete subsystem
W of V.

The integral manifolds of M NW are called Monge characteristics.
A special case is the Cauchy charateristic subsystem C(V) of V:

CV) ={XeV|[X,V]< V).

C(V) is complete, and is included in any maximal complete subsystem of
V.

In chapter 6 we consider the integration of vector field systems sat-
isfying dim)’ = dimV + 1, which includes first order PDE systems in
one dependent variable as a special case. Such a vector field system is
essentially equivalent to a single pfaffian equation w = 0, which is solved
by putting it into a canonical form:

n
w=0c»dz—2p,-dx‘ =0,
i=1
The reduction procedure accomplishing this is a good demonstration of
how powerful Lie’s ideas are.
By Drach’s classification there-then remains to consider second order
PDE systems in one dependent and n independent variables; the remain-

der of the monograph is devoted to the cases n = 2 and 3. The main
method is

look for Monge systems and their first integrals!

At the outset there is no consideration at all of groups—but they will
turn up anyway. The first example is the Lie pseudogroup of contact
transformations, which consists of all local diffeomorphisms of the jet
bundle J'(R?,R,) preserving the pfaffian equation dz — Y, p;dx’ =
0. A general Lie pseudogroup is a family of local diffeomorphisms
constituting the general solution of some PDE system, and being closed
under composition whenever this is defined.

Chapter 7 discusses higher order contact transformations and prolon-
gations of local diffeomorphismis to jet bundles.

In chapter 8 the general solution of the defining PDE system is sup-
posed to depend on a finite number of parameters only, in which case
the Lie pseudogroup is called a local Lie group. Acting on C" and having
r parameters, its elements are given by local diffeomorphisms

1 . .
(xL,...,x") > (FUxL, ..., x"d, ..., (X, ..., x";d, ..., d)),



