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THEORY OF NONLINEAR CONTROL

Y. H. KU

INTRODUCTION

Nature is non-linear

Since nature embodies a manifold of beautiful phenomena, it cannot
be limited by a linear relationship between elementary quantities. Thus a
simple pendulum as discovered by Galileo represents a simple hammonic
motion,and yet the equation of a pendulum is a second-order non-linear
differential equation. Kepler’s laws of planetary motion are non-linear. Not
only Newton’s law of gravitation is an inverse square law, but also
Coulomb’s law of force between electric charges and the simliar law of force
between magnetic poles are inverse square laws. Van der Pol’s equation
representing an electronic oscillator is non-linear and gives rise to a limit

cycle. Transistors and magnetic amplifiers are both non-linear devices.
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Feedback control systems

Truxal' pointed out: ‘The situations of primary interest to the de-
signer of feedback systems are those in which he is using feedback for a
definite purpose’. Feedback is used to overcome limitations of the physi-
cal components to effect a specific change in the characteristics of the
system. Wiener’ has borrowed the term cybernetics from Ampere to mean
the sciences of control and communication in the animal and the ma-
chine’ . His recent book’ has examined the role of non-linear processes
in physics, mathematics, electrical engineering, physiology and com-

munication theory.

THREE STAGES IN THE STUDY
OF PHYSICAL SYSTEMS

Development of linear system analysis and synthesis

The classical method of solving linear differential equations is well
known and furnishes a great urge to the idealization of actual physical
systems as linear. Heaviside’s operational calculus was developed by
Carson, Bush, Berg, Cohen, Wagner, and others in the years 1926-
1942. From 1942 on, Laplace transforms’ have been largely used in the
study of feedback control systems’. From 1947 on, control system syn-
thesis' rigorously calls for a logical procedure for the transition from speci-
fications to system. At the same time Fourier transforms and integrals
have been developed for the analysis and synthesis of networks.
Recognition and analysis of non-linear systems

Recognition of non-linear systems as they are indeed has had a long
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and glorious history. We shall roughly divide the methods of attack into
four categories: (a) perturbation and iteration methods; (b)isocline meth-
od and other graphical methods; (¢)linearization methods; and (d) phase-
space method, and the use of analogue and digital computers.

The perturbation method was developed by Poincare® and Lind-
steht’ primarily for astronomical problems. Poincare and Liapounov®
published their treatises in 1892-93. Lord Ray-leigh’s Theory of Sound’
was published in 1893-96; in it non-linear problems were discussed.
The isocline method is well known and was used by Van der Pol to find
the limit cycle. Other graphical methods are developed by Lienard®,
Ku', Hsia”, Paynter”and Buland“. The third category includes the
work of Krylov and Bogoliubov”®, and the recent work of Goldfarb',
Tustin”, Oppelt®, Kochenburger®, Johnson™ and others. Krylov.
and Bogoliubov’s method of equivalent linearization and principle of har-
monic balaice are made known to the world at larget through Minorsky”
and Lefschetz” . According to Andronow and Chaikin: ‘We may con-
sider the g;, q;' as coordinates of a space S of 2n dimensions called the
phase space’, where q; denote n positional coordinates and q;’ their ve-
locities in a dynamical system. The phase-space method has been devel-
oped and applied to control systems by Ku® ¥ and others.

Introduction of the new concept of non-linear control

The new concept of non-linear control can be stated as follows™ :

A feedback system can be controlled either linearly or non-linearly.
If the system has inherent non-linear characteristics, it is possible to in-

troduce linear compensating networks to improve the system performance.
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If optimum system performance desired in a control system cannot be ob-
tained by a combination of linear transfer functions, it is most desirable
to introduce non-linearities into the control system. If the system has in-
herent non-linear characteristics, linear compensation and non-linear
control can both be introduced. In short, the newest aspect of feedback
control is the development of the theory of non-linear control .

While a physical system with a given input has to be analysed to
know its response or synthesized to yield the desired output, a general
non-linear system with random inputs offers even greater challenge for
analysis and synthesis. The recent development of adaptive systems
makes the study of a linear systems even more important than before.

LINEARIZATION TECHNIQUES

Development of the describing function method

Use of describing function representation' of non-linear elements
substitutes a quasi-linear system whose parameters change slowly for one
containing rapidly varying relationships. The new system with slowly
changing parameters can be thought of in terms of the poles and zeros of
its response functions. As amplitude and frequency shift, the poles and
zeros of the hypothetical system move about in the complex plane. One
can then tell whether the hypothetical system is stable or unstable, or
has periodic oscillation. However, as both Johnson® and Nichols™
pointed out, the low-frequency divergent limit cycle prediction must be
disregarded. At the Heidelberg Conference 1956, West” discussed the
use of frequency response analysis in non-linear control systems and Klo-
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tter” suggested the Hamilton describing function in contrast to
Kochenburger’s Fourier describing function.
Other linearizing techniques

We shall briefly mention three other linearizing techniques: (a)
quastlinearization; () equivalent linearization; and (c) piece-wise
linearization .

The quasi-linearization technique developed by Chen™ can be used
for transient study of non-linear feedback control systems. Assuming that
the non-linearity is piece-wise linear, the operating point of the non-lin-
ear element is expected to shift during the transient over several linear
ranges. A quick evaluation of the actual transient response in the first
linear range through linear servo techniques determines the test function
for the non-linearity in the first two linear ranges. The representation
thus obtained permits a quick evaluation of the transient response in the
second linear range, and so on.

Bass™ proposed the equivalent linearization for a type of difference-
differential equation where the time-lag in the nonlinear function is taken
into account by a time-lead in the variable, say, x (t) and its deriva-
tives. The steps are: (a) insert x () = ag™ in the modified non-lin-
ear equation to obtain the formal instantaneous characteristic polynomial;
(b) replace complex numbers in the arguments of all non-linear terms by
their real parts, and weight each of these terms by a factor of 2; (c¢)
divide the polynomial by £”; (d) multiply it by d (1) and average
over a period (from 0 to 27); and (e) separate this averaged polynomi-
al into real and imaginary parts and find roots a, » of the resultant pair
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of real equations. Then one can study whether each solution (a;, v,)
is stable or unstable. Stem® has developed piece-wise linear network
analysis and synthesis with the view of bridging the gap between the work
of Wiener’, Zadeh”, and others. A systematic formulation of the prob-
lem leads to a suitable symbolism and an algebra of inequalities® . This
formulation helps to broaden the scope of diode network synthesis in par-
ticular and of piece-wise linear synthesis in general. Booton’s quasi-lin-
earization method” for analysis of non-linear systems with random inputs
gives the statistical characteristics of the response in terms of its autocoo-

relation and the cross-correlation between the input and the response.

THE PHASE-SPACE METHOD AND
RELATED CONCEPTS

The phase-space method as a general formulation of the physical system

A phase space of 2n dimensions is in general associated with the
behaviour of the dynamical system. By choosing a system of coordinates
we do not necessarily have to solve the problem graphically. However,
the usual association of the ‘isocline method’ with the solution of a
phase-plane equation suggests a close relationship between the phase por-
trait and the analytic solution.

In discussing Chen’s paper, Kalman said;

Tt should be strongly emphasized here that the phase-plane, or rath-
er phase space, is not just a name for a clever method directed toward
solving particular problems, but it is the most fundamental concept of the
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entire theory of ordinary differential equations ( linear or non-linear,
time-dependent or time-invariant) at the present time. This is because
the phase-space is a way of representing (sometimes only in an abstract
sense) all possible solutions of a differential equation------
Method of simultaneous phase space equations

Ku® developed the method of simultaneous phase-space equations
(see section 10-6, reference 38, p. 234). For a system of three de-
grees of freedom, the phase-space is characterized by six coordinates-
three positional coordinates ¢; and three velocity corrdinates ¢;’. The si-
multaneous phase-space equations are of the form:

d.f .IP
e . (1)

where ¢,” denotes the second derivative of g; with respect to time. The
method of simultaneous phase-space equations is highly powerful”®” in the
analysis of feedback control systems with non-linearity either in the for-
ward branch or in the feed-back branch or in both. In a non-linear con-
trol system shown in Figure 1 (see section 12-9,  reference 30, p.

r e m c
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Fig.1. Block diagram of a non-linear control system.
303), the two variables are e and ¢, corresponding to the positional co-

ordinates q; and @, . The other two coordinates are e’ and ¢’ correspond-
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ing to q,” and ¢,”. The simultaneous solution of equation 1 calls for nu-

merical techniques or the help of computers.

Phase-space approach to the design of saturating servomechanisms

Hopkin® used the phase-space approach in the compensatin of satu-
rating servomechanisms. An anticipator was developed to control the ap-
plication and reversal of the manipulated variable. Recently Hopkin and
Iwama"' reported about the design of a predictor-type air-frame controller
by phase-space analysis. The predictor was set up to handle the case
where the controlled system is of third order with one highly oscillatory
mode. A control system of the optimum relay type was obtained. Kalm-
an®”* made a phase-plane analysis of auto-matic control systems with non-
linear gain elements and then developed a method for the design of second
and higher order saturating servomechanisms. His method is based on
linear transformations in the phase space, corresponding with the partial-
fraction expansion of transfer functions to separate natural frequencies,
and makes use of the root-locus method for the qualitative study of closed
loop stability.

McDonald®, Hopkin® and others used the phase-plane technique to
optimize performance of servomechanisms. Bogner and Kazda® extended
McDonald’s method to obtain unique switching criteria for contactor servo-
mechanisms of order greater than two. Their analysis makes use of the
particular phase space in which servo error is plotted against its higher
derivatives. It is of interest to note that this phase space was used in the

author’s method of high-order phase space equation® 7 (see section
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10-5 of reference 30, p. 231). This phase space is a consequence of
Cauchy’s Theorem of Existence for the solution of a differential equation,
as a differential equation of the nth order is equivalent to a system of n
equations of the first order. Let the three phase-space coordinates be u,
=e, u,=¢€', and u; = ¢”. Bogner and Kazda made use of the prin-
cipal coordinate phase-space, where the new coordinates are: v, = u, -
Uy, ¥2=u, +u; and vy = u,. Rose® used a more complicated switch-
ing rule. Chang” investigated the optimum open-circuit switching criteria
for a high-order contactor servo. The optimum switching theory was fur-
ther generalized by Hung and Chang® .

NEW ANALYTIC TECHNIQUES
AND NEW TRANSFORMS

Reversion method and iteration method

Pipes, reversion method” is based on the algebraic procedure used
in reverting power series. It can be compared with the method of Picard.
Whereas this method was used to analyse a series circuit with a non-linear
inductor, Pipes introduced the minimum-mean-square-error method in
the analysis of a series circuit with a non-linear capacitor” . It may be
noted that the author used the acceleration-plane method to analyse a se-
ries circuit with both non-linear inductance and non-linear canacitance’' .
Other methods were discussed by Pipes™™ . An iterative method for non-
linear vibrations was given by Roberson.”
Number series transformation method

The number series transformation method was introduced by Tustin
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in 1947% . Madwed” ~® made further developments and showed that it is
possible to take the Fourier and Laplace transforms of the number series
transformations of functions.
Harmonic analysis and periodic solutions

Following the principle of harmonic balance, Lewis” suggested the
use of polynomial functions for carrying out the harmonic analysis. In
discussing this paper, Stour remarked: °In addition to the suggested ap-
plications to nonlinear differential equations, modulation and distortion,
it should be useful for the calculation of “describing functions” employed
in non-linear feed-back system analysis,’ Gillies®™® used the power se-
ries in the study of non-linear circuits and discussed the periodic solution
of a modified Van der Pol equation in which there is a relatively large
term kx in the damping coefficient besides the presence of a forcing func-
tion.
Step-by-step method

We shall mention as examples the methods developed by Stout®,
Naumov® and Dietz* . Referring Figure 2, where y () is a non-linear
function of x (t) and can be expressed as y = N (x), we have

A . Nx) Y

H(s)

Fig.2. Block diagram of a system with one non-linear element.
2(t)=ult)-v(t)=ult)- I;h(t—r)N[x(r)]dr (2)
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