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Preface

The aim of the book is to present a survey of a new class of chaotic systems, the so-
called fractional-order chaotic systems. This book can also be used as a textbook
for courses related to nonlinear systems, fractional-order systems, etc. The book is
suitable for advanced undergraduate and graduate students. It is a sort of a guide to
fractional-order chaotic systems that features material from original research papers,
including the author’s own studies. The book is organized as follows:

Chapter 1 is a brief introduction to fractional-order chaotic systems.

Chapter 2 provides fundamentals of fractional calculus, its properties and integral
transfer methods. Three well-known definitions of fractional derivatives/integrals
and methods for their numerical approximation are presented.

Chapter 3 includes a presentation of fractional-order systems, their descrip-
tion and properties. Fractional linear time-invariant (LTI), nonlinear systems, and
fractional-order controllers are considered.

Chapter 4 is devoted to stability of the fractional-order (LTI and nonlinear) sys-
tems. The stability of interval fractional-order system is also investigated.

Chapter 5 contains a survey of various fractional-order chaotic systems with the
total order less than three. The well-known systems such as, for example, Chua’s
oscillator, Lorenz’s system, Rossler’s system, Duffing’s system, and some other sys-
tems, for instance, Volta’s system, are analyzed as well.

Chapter 6 begins with the introduction to control strategies of the fractional-order
chaotic systems. Three general approaches: feed-back control, sliding mode control,
and synchronization, are described. Other strategies are mentioned and discussed as
well.

Chapter 7 concludes this book by some additional remarks.

Appendix A lists Matlab functions used for simulation of the fractional-order
chaotic systems described in Chapter S.

Appendix B lists a Laplace transform and inverse Laplace transform table of the
functions used in fractional calculus.

Kosice, April, 2010 Ivo Petrds
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Euler’s gamma function
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Chapter 1
Introduction

Fractional calculus is a topic being more than 300 years old. The idea of fractional
calculus has been known since the regular calculus, with the first reference proba-
bly being associated with Leibniz and L’Hospital in 1695 where half-order deriva-
tive was mentioned. In a correspondence between Johann Bernoulli and Leibniz
in 1695, Leibniz mentioned the derivative of general order. In 1730 the subject of
fractional calculus did not escape Euler’s attention. J. L. Lagrange in 1772 con-
tributed to fractional calculus indirectly, when he developed the law of exponents
for differential operators. In 1812, P. S. Laplace defined the fractional derivative by
means of integral and in 1819 S. F. Lacroix mentioned a derivative of arbitrary or-
der in his 700-page long text, followed by J. B. J. Fourier in 1822, who mentioned
the derivative of arbitrary order. The first use of fractional operations was made by
N. H. Abel in 1823 in the solution of tautochrome problem. J. Liouville made the
first major study of fractional calculus in 1832, where he applied his definitions to
problems in theory. In 1867, A. K. Griinwald worked on the fractional operations.
G. F. B. Riemann developed the theory of fractional integration during his school
days and published his paper in 1892. A. V. Letnikov wrote several papers on this
topic from 1868 to 1872. Oliver Heaviside published a collection of papers in 1892,
where he showed the so-called Heaviside operational calculus concerned with linear
generalized operators. In the period of 1900 to 1970 the principal contributors to the
subject of fractional calculus were, for example, H. H. Hardy, S. Samko, H. Weyl,
M. Riesz, S. Blair, etc. From 1970 to the present, they are for instance J. Spanier,
K. B. Oldham, B. Ross, K. Nishimoto, O. Marichev, A. Kilbas, H. M. Srivastava,
R. Bagley, K. S. Miller, M. Caputo, 1. Podlubny, and many others (Cafagna, 2007,
Miller and Ross, 1993).

At present, the number of applications of fractional calculus rapidly grows. These
mathematical phenomena allow us to describe and model a real object more accu-
rately than the classical “integer” methods. The real objects are generally fractional
(Nakagava and Sorimachi, 1992; Oustaloup, 1995; Podlubny, 1999a; Westerlund,
2002), however, for many of them, the fractionality is very low. A typical example
of a non-integer (fractional) order system is the voltage-current relation of a semi-
infinite lossy transmission line (Wang, 1987) or diffusion of heat through a semi-
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infinite solid, where the heat flow is equal to the half-derivative of the temperature
(Podlubny, 1999a).

The main reason for using integer-order models was the absence of solution
methods for fractional differential equations. At present, there are many methods
for approximation of the fractional derivative and integral, and fractional calcu-
lus can be easily used in wide areas of applications. Fractional-order calculus has
played an important role in physics (Parada et al., 2007; Torvik and Bagley, 1984),
electrical engineering (electrical circuits theory and fractances) (Arena et al., 2000;
Bode, 1949; Carlson and Halijak, 1964; Nakagava and Sorimachi, 1992; West-
erlund, 2002), control systems (Axtell and Bise, 1990; Dorédk, 1994; Podiubny,
1999b; Oustaloup, 1995), robotics (Marcos et al., 2008), signal processing (Tseng,
2007; Vinagre et al., 2003), chemical mixing (Oldham and Spanier, 1974), bioengi-
neering (Magin, 2006), and so on. One of the very important areas of application is
the chaos theory (West et al., 2002; Zaslavsky, 2005).

At this point we have to note that various mathematical definitions of chaos are
known, but all of them express close characteristics of the dynamic systems that are
concerned with supersensitivity or sensitive dependence on the initial conditions,
which are characterized by Lyapunov instability as a main property of the chaotic
oscillation. Roughly speaking, chaotic behaviour arises whenever the system trajec-
tories are globally bounded and locally unstable (Andrievskii and Fradkov, 2003).

The fundamentals of a new mathematical apparatus for studying the chaotic phe-
nomena and the theory of nonlinear oscillations were laid in 1960’s and 1970’s by
A. Poincaré, B. Van der Pol, A. A. Andronov, N. M. Krylov, A. N. Kolmogorov,
D. V. Anosov, Ya. G. Sinai, V. K. Mel’nikov, Yu. I. Neimark, L. P. Shil’nikov,
G. M. Zaslavsky, and their collaborators. From that time on, the chaotic behavior
has been discovered in numerous systems in mechanics, chemistry, physics, biology
and medicine, electronic circuits, economics and so on (Andrievskii and Fradkov,
2004).

It is well known that chaos cannot occur in continuous nonlinear systems with the
total order less than three (Silva, 1993). This assertion is based on the usual concepts
of order, such as the number of states in a system or the total number of separate
differentiations or integrations in the system. The model of chaotic system can be
rearranged to three single differential equations, where the equations contain the
non-integer (fractional) order derivatives. The total order of the system is the sum
of each particular order instead of three. To put this fact into context, we can con-
sider the fractional-order dynamical model of the system. Hartley et al. introduced
the fractional-order Chua’s system (Hartley et al., 1995). In the work (Arena et al.,
1998), the fractional-order cellular neural network (CNN) was considered, the frac-
tional Duffing’s system was presented in the work (Gao and Yu, 2005), while other
fractional-order chaotic systems were described in many other works (e.g., Ahmad,
2005; Deng et al., 2007; Guo, 2005; Li and Chen, 2004; Lu, 2005a,b; Nimmo and
Evans, 1999, etc.). In all these cases chaos was exhibited in a system with total order
less than three.

The term of “system order” should be mentioned and explained as well. The
system order is not equal to the number of differential equations if we consider frac-
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tional differential equations. The system order is equal to the highest derivative of
the fractional differential equation of the mathematical model. Arena et al. (1998)
and Hartley et al. (1995) simply replaced the integer-order derivative by fractional
order one. For numerical simulation they used an approximation method proposed
by Charef et al. (1992). This approximation of fractional-order operators is in the
form of rational polynomial of high order in the frequency domain. Such approxi-
mation may produce the so-called fake chaos. As what has been shown in the works
(Tavazoei and Haeri, 2007, 2008), it is possible to calculate a minimal order of sys-
tem, where chaos is still observed. In other cases it is a numerical error, which leads
to the fake chaos. It is very important to take this into account.

The above considerations and conclusions in the aforementioned works by Arena
et al. and Hartley et al. lead to several notes. We will discuss three of them. The first
note is on fractional order of derivatives. We cannot simply replace the integer order
with fractional order without any reasons. Some appropriate reasons are described in
this book. It could be a fractional order in the capacitor model in the case of electrical
chaotic circuits. The second note is on approximation methods used. If we use ahigh
order approximation method then the total order of the system is not equal to the
highest derivative of the fractional differential equation but is equal to the highest
order of approximation polynomial. Moreover, the system could produce fake chaos
through numerical errors in calculations. The third note is on systemn order. In most
of the mentioned papers, the terms of system order, model order, number of initial
conditions, number of state space variables and methods for rewriting the state-
space representation to fractional differential equations are not clearly defined. In
this book, we will discuss how to define them,

This book is also presented a collection of the Matlab functions created for nu-
merical simulation of the described fractional-order chaotic systems. The function
codes are downloadable from the website of MathWorks, Inc. and their utilization
is described and commented in Appendix A of this book.
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