ISSN 1674-3202

% b5 58

Studies in Logic

2%, F4H, £F5, 2009 £12A
Volume 2, Number 4, Winter, December 2009

ISSN 1674-3202

2 45 W 5

Studies in Logic

B2k WAW, XFE, 20094124

Volume 2, Number4 , Winter, December

ks PEEEYESE £
Sponsored by Sun Yat-sen University

and The Chinese Association of Logic

ZigFEMR (1)

REZERS

3] B 298 -JEASES (FTEHTHRERE)
kK (PEESRER)
FH/HFER: BKE (FILKRE)
BIEFEZER: BWLIL (PlikE)
ARFEE (hEAERER)

% &
AR R (RS AR ANBFFEME (I S MR HR K S B k)
I () BEE (ABKFE)
K EIRWH (REEKP) DU - BT (BIRAKFE)
BB sk KA TSR (BIRAKE)
BEE (REARKY) BAE - S S RATR T 2B
THE (F5K%) HIR (dLsikE)
BRIUE (BiEA) EEEG (BOEIHERS)
ffA (P RE) W URIEEA)
Wi EE (DEEA¥) EXH (APASE)
PR (A Yy % (KRBT LT A¥)
BHER (HITKE) REMINE (hilika)
WS AT (B k) O (RHIKE)
% (RFAE) BT (HRA¥)
XREAE (dbst Tk k) BRI (LK)
X (FERE) R (LSt
FHRIK- A (BB R k% (PIKF)
@ WL

BE¥MR (FTD
2% %44 B8 7H
2009 EE 4 A, 12 B 18 AR

H X

— M TFREBFRKRWATLIY R Nk 1
B SR o) M R i KFEHE 16
PR AR LB S ML S X B 48
RSB E TR A TR gk 75
WHESEENESBIE %% 82
B EXHERREFER FEH 97
FIVEZEENMERSIHE JMrE 114

“@RPEEBFESRLIVFFERS” K

AEE, srEE 120

Studies in Logic
Volume 2, Number 4, December 2009

TABLE OF CONTENTS

An Extension of ATL for Model Checking Causality
Hu Liu

Underdetermination in Casual Inference

Jiji Zhang

Chinese Pragmatic Markers and Conventional Implicature
Guangwu Feng

The Generated Sub-frame of Canonical Frame of Modal Logic
Jiangjie Qiu

On Set-theoretic Semantics for Modal Logic

Jing Shi

Tarski: Semantic Truth and the Correspondence Theory
Zhubin Lt

Conference Report: on the 8th International Conference on Logic

and Cognition
Yuping Shen

Conference Report: the Conference of 30" Anniversary of the Chinese

Association of Logic in Chengdu
Guoping Du, Chongli Zou

16

48

75

82

97

114

120

Swdies in Logic, Vol. 2, No. 4 (2009): 1-15
PII: 1674-3202(2009)-04-0001-15

An Extension of ATL for Model Checking Causality™

Hu Liu
Institute of Logic and Cognition, Sun Yat-sen University
livhu2 @mail.sysu.edu.cn

Abstract. CTL model checking has been widely used in formal specification and verifica-
tion. The so called alternating time temporal logic (ATL) is an extension of CTL to formalize
a game-like multiplayer specification. The property that players can guarantee desired system
state is modeled in ATL by using cooperation operators. In practice, it is usually important to
know that a causal link indeed exists between players’ actions and states of a system, especially
when modularity is considered. We extend ATL by introducing new operators to characterize
causalities. The resultant logics are more expressive than ATL, while share the same computa-
tional complexity.

1. Introduction

Techniques for automatic formal verification of finite state transition systems
have developed in the last two decades. The most successful of these methods is
called model checking [3]. Computational systems are formalized by formulas of
branching time temporal logics, among which the computation tree logic (CTL) is
the most widely used formalism. A finite state transition system is transformed to a
branching time structure by interleaving the states transition relation of the system.
Each path of the resultant branching time structure is a possible computation of the
system.

CTL uses temporal modalities () (“next”), O (“always™), and &/ (“until”) to-
gether with a path quantifier E to express that a certain property of a system is sat-
isfied in some possible computation. For example, EO¢ means that there exists a
computation such that is always true along this computation. The problem of CTL
model checking is to determine whether a CTL formula is satisfiable in a given state
of a states transition system. There exist efficient CTL model checkers, such as SMV
[7], that have been used in industrial practice for normal quality control process [4].

An extension of CTL, called alternating-time temporal logic (ATL), has been
proposed to tackle the specification and verification of open systems [1]. An impor-
tant model checking problem of open systems is so-called alternating satisfaction:
A group of processes can guarantee a system entering into certain states, no matter
what other processes do. ATL is defined on a game-like structure. Each process is

Received 2009-10-20

*This paper was supported by A Foundation for the Author of National Excellent Doctoral Disser-
tation of PR China (FANEDD 2007B01).

2 Studies in Logic, Vol. 2, No. 4 (2009)

called a player. A set of cooperation operators ({A)), where A is a set of players, is
present to characterize game-like properties. A formula of the form {(A))¢ is read as
that “players in A can guarantee that @ is true” or equivalently, “players in A have a
collective winning strategy to bring about ¢ regardless of what other players of the
system do.” ATL is an extension of CTL because the path quantifier £ of CTL is de-
finable in ATL by (X)), where X is the set of all players. The dual quantifier A of E
is defined by ((0)). Model checking problem of ATL is proved to be PTIME-complete
[1].

In ATL, each player is endowed with a set of strategies. Suppose that at a state
g the set of all possible computations is C. when a set of players A have chosen
their strategies F4, one for each player in A, C is limited by F4 to C’ with C' C C.
In other words, players A act in a certain way and rule out computations in C/C".
Formula ((A))v is true at state g if and only if such collective strategies F'4 exists that
% is true at all computations in C’ limited by Fla.

Although at first sight, alternating satisfaction implies that it is players’ activi-
ties that cause certain system state, it in fact makes no such promise. {(A))7 can be
true without any causal link between A’ actions and truth of ¢. An obvious coun-
terexample is when 1 is a valid formula. In this case ((A))v is true because 1 is true
everywhere. A has nothing to do with the truth value of .

We shall call it alternating causality that a group of players cause a system
entering into certain states, no matter what other processors do. It is different from
alternating satisfaction in just one word, “guarantee” being replaced by “cause” to
indicate existence of a causal link. Alternating causality is an important property of
open systems, especially when modularity is considered. Suppose that a bundle of
processes A is designed as an unit of anti-deadlock. Even if ((A)) (O No_deadlock) is
checked to be true at desired states, it is not safe to say that A functions well, because
there is a lack of causality to indicate that No_deadlock is a result of A’s moves.
It may come from other parts of the system. In that case A may fail to function of
No_deadlock in a different environment.

We will consider two different but related types of connections between players’
activities and system’s states. First, we consider players’ power of control over states,
or syntactically, players’ power of control over truth values of formulas. A memory
allotment unit may have full power over states of system memory, and less power over
states of system processor, and even less power or no power over states of network
access. For example, A may have full power over the values of a variable x, and less
power over the values of x V y, since y’s values may depend on other players.

The second issue concerns relations among players. We discuss the exclusivity
property and minimality of player in performing a function. Intuitively, both power
of control and exclusivity matter with causalities, and they are closely related. We
will show that a full power of control implies exclusivity.

The remainder of the paper is structured as follows. Next section is an intro-

Hu Liu / An Extension of ATL for Model Checking Causality 3

duction to game structure and ATL. Section 3 and 4 are the principal parts consisting
of both informal discussions and formal definitions of CATL and SATL. We present
symbolic model checking procedures in section 5.

2. Alternating Time Temporal Logic

Open systems are modelled by (concurrent) game structures, which reflect si-
multaneous steps by the players. Definitions in this section are mainly from [1] and

[5].
Definition 2.1 A game structure is a tuple S = (£,Q, I, 7, 68) , where

(1) X ={aa,...,an} is a finite set of players;

(2) Q is a finite, non-empty set of states;

(3) 1lis a finite set of propositions;

(4) For each state q € Q, 7(q) C Il is a set of propositions true at q. The function
T is called a labelling function;

(5) 6 : ExQ — 229 s the system transition function, which maps each pair of
player and state to a set of sets of states, with §(a, q) reflecting the set of choices
available to the player a when the system is in the state q. We require that this
function satisfy the constraint that the system is completely controlled by its
component players: For every state q, (\{Qa,, - - -, Qa,, } is a singleton, where
for each player a;,Qq; € §(a;,q) is a possible choice for a; at q. That means
that if every player has made her choice, the system is completely determined.

The alternating-time temporal logic (ATL for short) is defined with respect to a
finite set II of propositions and a finite set ¥ of players. An ATL formula is one of
the following:

(S1) p, for propositions p € II.
(82) —por 1 V pa, where @, v and @9 are ATL formulas.

(83) (A) O ¢, (AN, or {A)p1Upa, where A C T is a set of players, and
©, @1, and 9 are ATL formula.

Additional Boolean connectives are defined from — and V in the usual manner. Oper-
ator ((A)) is a path quantifier, O (“next”), O (“always”), and I/ (“until”) are temporal
operators. We write ((A) Oy for (AN true Uep.

For two states g, ¢’ and a player a, we say that ¢’ is an a-successor of q if there
is a set Q' € é(a, q) such that ¢’ € Q’. Intuitively, if ¢’ is an a-successor of g, then
q' is a possible outcome of one of the choices available to a at g. We denote by
succ(a,) the set of a-successors at state g. We say that ¢’ is a successor of q if for
each player a € X, we have ¢ € succ(a, q); intuitively, if ¢’ is a successor of g,

4 Studies in Logic, Vol. 2, No. 4 (2009)

then when the system is at state g, the players ¥ can cooperate to ensure that ¢’ is the
next state.

A computation is an infinite sequence of states A = qo, q1, . . . such that for all
i > 0, the state ¢; 1 is a successor of g;. A computation starting at state q is referred
to as a g-computation; A[i] denotes g; in the sequence A; A[0, 7] and A[i, o] denotes
the finite prefix qo, . . ., g; and the infinite suffix g;, ¢;+1, . . . respectively.

Let Q% be the set of all non-empty finite sequences over Q. A strategy f, for a
player a is a function f, : Qt — 2% such that if the last state of a sequence) is g,
then f,(\) € &(a, q). Thus, a strategy f, determines for each finite sequence an a’s
choice as her next action. Each strategy f, induces a set of computations that player
a can enforce. Suppose A C X is a set of agents and F4 = {f, | a € A} is a set of
strategies, one for each player in A. For a state ¢ we define the outcomes of F4 from
q to be the set out(q, F4) of the g-computations that the players in A enforce when
they follow the strategies in F4; that is, a computation A = qg, g1, - - . is in out(q, F4)
if go = ¢ and for all positions ¢ > 0, gi+1 € [fa(A[0,7]) | fo € Fa}.

For convenience we define satisfaction of a temporal formula at a computation
A as follows. Note that a temporal formula is not an ATL formula. We use v to range
over temporal formulas.

A Opiff All] = ¢.

A EOpiff A[i] E ¢ foralli > 0.

A | p1ld o iff there exists a i > 0 such that A[7] = @2 and forall 0 < j < 4,
" we have \[j] E ¢1.

We write S, g = ¢ to indicate that ¢ is satisfied at state ¢ in game structure S.
When S is clear from the context, we omit it and write ¢ |= ¢. The semantic rules
for the satisfaction relation |= are defined as follows:

q = piff p € 7(q), where p is a proposition.

g —piff q |~ .

aE P Veiffg b prorg = 2.

q E (AN, where ¥ € {Oy, Op, p1ldps} iff there exists a set of strategies
F4, one for each a € A, such that for all computations A € out(q, F4), we
have \ |= 1.

ATL is an extension of CTL. [1] shows that the CTL path quantifier E can be
look upon as a special cooperation operator (X)) in ATL, where ¥ is the set of all
players.

3. CATL

(A is understood by saying that ¢ is guaranteed to be true by A. It states
that v is true along all paths selected by a collective strategy of A. The strategy

Hu Liu / An Extension of ATL for Model Checking Causality 5

does not necessarily have real effect on 1. 1’ being a valid formula is an obvious
counterexample. In this case A has absolutely no power of control over .

Researchers in stit theory has already noticed the problem. Based on different
structures, stit operator has some similarities with cooperation operators. Readers
may consult [2] for an overview of the area. Horty introduced in [6] a dstit operator
to eliminate the problem. Extending the idea to ATL, we have an alternative operator
{A)Y as defined as follows.

q & (AY %, where 1 is a temporal formula, iff there exists a set of strategies
F4, one for each a € A, such that for all computations A\ € out(q, Fa), we
have A = 9, and (2) there exists a g-computation X such that A = 2.

The positive condition (1) is the same in the definition of {{A)). The negative condi-
tion (2) states that 1/ is not a settled truth yet, so that A’s action may have some real
effect on 1. ((A))’¢) indicates than A has more power of control over v than ({A)
does.

dstit operator is not definable by stit. To do so would need an overall path
quantifier. Such quantifier is definable in ATL. The following validity is a definition
of (A)’ by (A).

(AN % = ((ADY A (D))
Actually {(A)) and ((A))’ are inter-definable and just differ in the choice of primitive.
Ay < ((A)v Vv (D)y).

Positive condition is the core in the definition of ((A))’ with an auxiliary negative
condition. However, real world applications sometimes require both sides of control.
A process may need to have the power of activating and inactivating another process,
a memory allotment unit should be authorized in both access granting and access
denying and so on. Such properties may be formalized by

ANy A (A) .

The sentence is not a well formed ATL formula since a non-temporal expression
— immediately follows {A)). We therefore introduce a new operator {A)), to en-
capsulate both sides. We call ((A))4 double control cooperation operators. Sometime
we also address it as indicating a full power of control.

-q = (A)q1, where 1 is a temporal formula, iff there exists collective strate-
gies F4 and F, one for each a € A, such that X |= 1 for all computations
A € out(q, Fa), and X' | 1 for all computations X' € out(g, F%,) .

Players A in ((A))qv have more influence on the value of ¢ than that in ((A4))'v)
and in ((A))+). Formally we have validities
(Ahay — (A)Y.
(ANY — (Ahy.

6 Studies in Logic, Vol. 2, No. 4 (2009)

(@) is a satisfiable ATL formula. It states that empty set of players could have
some functions. The problem is eliminated with ((A))4 t. Empty set is responsible for
nothing, as shown in the following valid formula, where v is any temporal formula:

—(0) ay.

Consider a simple example of two process system, say a and b. a assigns values
to Boolean variable z. When = = 0, a leaves x unchanged or changes it to 1. When
z = 1, a leaves = unchanged. Similarly, b assigns values to Boolean variable y.
We model the synchronous composition of the two processes by the game structure
S =(%,Q,I1,n,4J), where

Y = {a,b}.
Q =1{4,9,qy, qzy }-
I = {z,y}.

n(q) = 0;m(¢z) = {z};m(qy) = {y}; 7(gzy) = {7, 9}

6(aa Q) = {{q’ Qy}’ {‘Iz'a Q:cy}}; d(b, Q) = {{Qa Qa:}y {an sz}}
0(a,qz) = {{9z, @z} }; 0(b, ¢z) = {{az}, {9y }}

6(a,qy) = {{ay}, {auy}}; 6(b,ay) = {{ay, @y }}

0(a, gzy) = {{sz}}; 0(b, gzy) = {{qu}}

First, clearly S, q = {({a})) O(zV —z) because z V —z is a tautology. However,
S,q i ({a}) O (= V —a).

Second, we have S, g = ({a}))’ O (z V y) because O)(x V y) is true at all com-
putations where a changes the value of = to 1. O(z V y) is false at the computation
where a and b leave both x and y unchanged. S, q £~ {({a}))a O (xVy) because there
is no strategy for a to guarantee that O)(z V y) is false. The value of z V y depends
on both a and b.

Third, S, q | {{a})a O z. a can either change the value of z to 1 so that Oz
is guaranteed to be true, or she can leave the value of = unchanged so that Oz is
guaranteed to be false. It is intuitive that a has an increasing power of control over

O(z Vv —z), O(z V y), and Ox.
Proposition 3.1 {(A))4 is not definable in ATL.

Proof. The proof is sketched. Where p; and p2 € II, we show that { A)) ~(p1UUp2)
is not semantically equivalent to any ATL formula. Suppose otherwise. Let ¢ be its
equivalent in ATL. Then g |= ¢ iff there exist strategies F4 such that A [~ p1U 'p2 for
all X € out(q, Fa).

First, we observe that ¢ need not contain any operator (B)) with B # A. For
any B # A we can always construct a game structure such that for any A’s strategy
F4 and any B’s strategy Fg, out(q, Fa) # out(q, Fg). Therefore B is irrelevant in

Hu Liu / An Extension of ATL for Model Checking Causality 7

evaluating (.

Second, ¢ need not contain any Boolean combination of more than one formula
of the form {A)v. For example, (A1 A {A)1)o. In general truth of ({A))1p, and
truth of {(A))1)2 depend on different strategies of A. Therefore we can always con-
struct a game structure such that one of {{A))1; and ((A))1)2 is irrelevant in evaluating
®.

Third, need not contain any nested operator because (A))—(pi1Up2) does not.
A nested operator would subdivide an outcome, which is useless in evaluating ¢.

We conclude that ¢ has a very simple form: it is a Boolean combination of
propositions and a formula {(A))v, where 1 can be either Oy, or Oy, or xUx/,
where x and x’ are propositional.

We already know from temporal logic studies that I{ is not definable by either
O or O. Consider the case of xUx’. Since {(A))0p is semantically equivalent to
{A)—-(True U —p), it is semantically equivalent to an ATL formula ¢ that is a
Boolean combination of propositions and {{(A)xUx’. When A = %, it is a definition
of EO from EU. Contradict to the fact that £Q), EO, and EY is a minimal set of
operators of CTL. QED

Conversely, it is clear that ((A)) is not definable from ((A))4. Both operators
should be primitive. From now on we use the name CATL (causally alternating time
temporal logic) to denote the logic obtained by adding ((A))4 to ATL.

Note that unlike ATL, Boolean combination of temporal formulas is definable
in CTL. For example, E—~(p1ldp2) =4 EG—p2 V E((—~p2)U(—p1 A —p2)).

Both ((A)) and {(A))4 have monotonicity with respect to players.

Proposition 3.2 Where A C B, the following formulas are valid.

(ADav — (Bay-
(A)y — (B)o.

Proof. Suppose that {{A))4% is true at q. That is, there exist collective strategies
F4 and F; such that A € out(q, F4) implies A |= v, and X' € out(q, F;) implies
N B 1. Let Fg (Fj) be such that players in A take the same strategies as in F4 (F,).
Then out(q, Fg) C out(q, F4) and out(q, Fg) C out(g, Fy). Thus, A € out(q, FB)
implies A |= 9, and X € out(q, Fj) implies X’ = ¢. QED

Exclusivity is a desired property of open systems. It states that a group of players
A can guarantee a system entering into certain states, and no other group of players
B can do the same unless A is included. Exclusivity indicates that A really functions
as designed. Since in practice A is usually considered as one unit, we do not take into
account cases of AN B # 0. ATL does not have exclusivity. There exist A, B with
AN B = 0 such that both {(A))%) and ((B))1) are satisfiable.

8 Studies in Logic, Vol. 2, No. 4 (2009)

Proposition 3.3 CATL has the property of exclusivity, that is, forany AN B =
and any temporal formula ¢/, we have a valid formula:

(Ahav — ~(B)¢.

Proof. Suppose that we have both ((A))4¢ and (B))%. Then there exist col-
lective strategies F4 and Fp such that A € out(q, F4) implies A = 1, and X €
out(q, Fg) implies A’ = . By definition 2.1 and A N B = 0, out(q, Fa) N
out(q, Fg) # 0. Contradiction. QED

It is intuitive that full power of control implies exclusivity. However, the reverse
is not true. The following statement does not hold in general.

If g |= (A)% and g [~ (B))¢ for nay AN B = 0, then q |= (A)q¥.

For a counterexample consider a two players game structure, say a and b. Let
c1,€2,C3,C4, C5, Ce be the six computations passing through q. Let a have three
choices {c1, c2}, {€3, ca}, and {c5, c6 }, and b have two choices {c1, c3, ¢5}, {¢2, 4, 6}
Let +) be true at ¢1, ¢, c4, ¢5, and false at c3, c6. It is easy to check that ¢ = ({a})9
and g = ({b})¥, but g }= {({a})qrp. Thus full power of control is truly stronger
than exclusivity.

For the last remark, ((A))4 is definable in a richer language ATL*. However,
the model checking algorithm of ATL* is exponential in time [1]. A polynomial
algorithm for CATL is present in the next section.

4. Strict alternating-time temporal logic

In the studies of stit theory on branching time, there is an idea called strict stit
presented in [2]. Intuitively, for a set of players A, a formula of the form [A stit :
] means that players in A see to it that . Strict stit theory implements a more
limited relation of “see to it that” by distinguishing the players in A according to
their different roles in the action “see to it that ”. The idea is that a player in A, say
a, is essential for the action in the sense that without a, the other players A — {a}
cannot see to it that ; that is, [A — {a} stit :] is false.

We introduce a similar idea into alternating-time temporal logic for our pur-
poses.

Definition 4.1 A set of players A is quasi-essential to a temporal formula ¢ at state

q if A is a minimal set such that q |= {A); that is, q |= ({A), but for any proper
subset A’ of A, q i (A")e.

That a set of players A is quasi-essential to ¢ at ¢ means that players in A can
cooperate to ensure that ¢ is true and that there is no redundant player in A with
respect to this collective action. Note that this definition does not rule out that there

Hu Liu / An Extension of ATL for Model Checking Causality 9

exists other set of players A’ # A such that A’ is also quasi-essential to ¢ at g. That
indicates that A is not essential for ¢ at ¢ in the sense that more than one group of
players can ensure the same outcome.

Definition 4.2 A set of players A is essential to a temporal formula ¢ at state q if
A = N{B| B is quasi-essential to ¢ at q}; For convenience, we also call each player
a € A essential fo @ at q.

Suppose that in a system there are only three players a, b, and ¢, and we have
a = ({a,b,c})eo, q = ({a,b}), and g = ({a, c}))¢, and there is no other group
of players can ensure ¢ at ¢. In this example, {a, b, c} is not quasi-essential to ¢ at g,
because its proper set {a, b} (or {a, c}) can also ensure ¢ at ¢. {a,b} and {a, c} are
quasi-essential to p at q. However, neither of the two sets of players is essential. The
only essential set is {a}.

A quasi-essential set represents a minimal sufficient condition for a temporal
formula. An essential set represents a collection of necessary conditions for a tem-
poral formula. Actually, it easy to see that an essential set collects all such necessary
conditions.

The definition of “quasi-essential” shows which groups of players are needed
to ensure a given outcome. And a given outcome can be implemented by different
groups of players. Their intersection indicates the players indispensable to the out-
come. Though there may be more than one quasi-essential group of players at a given
situation, the essential group of players is always unique.

Consider a concurrent program designed for an authentication protocol as an
example. A process that tackles information transmission is indispensable to the pro-
gram. In our analysis this process is essential to the program specification. We may
call such processes core processes (core players). In the above example, a process
that tackles the system clock is not indispensable because it is possible to implement
the program specification without an overall clock control: the synchronicity of the
system can be implemented by other ways such as timestamps. Then a clock control
process is not a core process and is not essential to the system specification. However,
it is quasi-essential: It must be used if we implement synchronicity by a real clock
control.

It is practically important to distinguish the quasi-essential or essential processes
in a concurrent program. For quasi-essential processes, in a concurrent program,
some processes may be redundant to a given task so that we do not need to consider
them when we design or verify the system with respect to the task. This may reduce
the cost of system design or specification. For essential processes, when there are
several alternative groups of processes available to fulfill a given task and we want to
make a choice among these alternatives, it is of benefit to know which processes are
core processes. For, we only need to compare the non-core processes. We also can

10 Studies in Logic, Vol. 2, No. 4 (2009)

expect that this will reduce the cost of system design and verification.

We extend ATL in order to express the above concepts. We call the resultant
logic strict alternating-time temporal logic (SATL). The language of SATL consists
of the language of ATL plus two new cooperation operators {(A))qe, read as “A is
quasi-essential to . ..”, and {(A))., read as “A is essential to” A formula of SATL
is one of the following:

(S81) p, for propositions p € II.
(82) —por @1 V pa, where p, 1 and g are SATL formulas.

(S3) (A, (AN gewp, or (ANep, where A C X is a set of players, ¢ € {Oy, Oy,
Y1l }, and 1, 11, and vy are SATL formulas.

Similar to ATL, we write ((A))q<Cp for (A)getrue Uy, and ({A)) Oy for
{ADetrueUep.

The semantics of SATL is based on a game structure S = (X, Q,I1, 7, d), as
has defined. The semantic rules of satisfaction relation = for propositions, Boolean
connectives, and cooperation operator ((A)) are the same as ATL’s. The rules for the
two added operators are as follows:

q E (A gew, where ¢ € {Oy, Oy, p1lpa} iff g = ((A))p, and there is no
A’ C A such that ¢ = (A").

q k= (A e, where ¢ € {Ov, 09, pildpa} iff A= {B | g | (Bgep}-

Clearly, for any tautology «, @) is the only quasi-essential set to ¢ at every state,
and therefore () is the essential set to ¢ at every state, which says that no player
is essential to a tautology. The following lemma shows some facts about the new
operators.

Lemma4.3 (1)If q = ((A), thenthere isa A’ C A such that q |= (A") getp.
(2) If ¢ = (AN e, then for every set of players B # A, q = (B))etp.

Consider the two players example as defined before. Clearly, S, ¢ = {({a,b})O
(x V y) because O(x V y) is true at all computations where player a (or b) takes
a strategy such that when a (or b) is at state g, she changes the value of z (y) to
1. However, {a,b} is not quasi-essential to (O)(z V y) at ¢ because we have both
S,q k= ({a}) O (¢ Vy) and S,q = ({b}) O (zV y), . It turns out that S,g }
{{a,6}ge O (z Vy).

Actually, {a} and {b} are all quasi-essential sets to ()(x V y) at q. Then @ is the
essential set to O(z V y) at gand S, q = ((0))ge O (z V y). This indicates that there
is no essential player in this situation. Neither a nor b is core process. It is easy to
see that {a} is the only quasi-essential set to Oz at g, and then is the essential set to

Oz at g. We have S, ¢ = ({a})e O z.

Hu Liu / An Extension of ATL for Model Checking Causality 11

5. Symbolic model checking

CATL model checking is the problem of finding the set of states in a game
structure where a given CATL formula is satisfied. The algorithm is extended from
the one in ([1]). It is implemented by a procedure Check that takes a CATL formula
(as its argument and returns exactly the set of those states that satisfies ¢. The output
of Check depends on the game structure being checked; this parameter is implicitly
in the below algorithm. We define Check inductively over the structure of CATL
formulas. The cases for propositions and Boolean connectives are straightforward.

Check(p) = Reg(p), where the function Reg returns the set of states that
satisfy p.

Check(—yp) = Check(True) — Check(yp).

Check(py V w2) = Check(v1) U Check(p2).

The procedures for operator ((A)) are from [1].

Check({A)) O ¢) = Pre(A, Check(yp)), where the function Pre returns the
set of states ¢ such that from g, the players in 4 can cooperate and enforce the
next state to lie in Check(p).

Check({{A)Oyp) is implemented by the following procedure:

begin

p = Check(True); T := Check(yp);
while p 7 do

p = T1; 7 := Check(p) N Pre(A,p)
od;

return p.

end

Check({A)¢p1Ud p2) is implemented by the following procedure:

3

begin
p := Check(False); T := Check(y2);
while 1 € pdo

p = pUT; 7:=Check(v1) N Pre(A,p)
od;

return p.

end

For the operator ((A))4, we have that

Check({(A)a O) = Check({A) O ¢) N Check({A) O —~);
Check({(A)aDp) = Check({A)Dp) N Check({(A)O—p);

Check({AYaprldp2) = Check({A)o1ldpa) N NU(A, @1, @2), where
NU(A, @1, p2) is the following procedure:

12 Studies in Logic, Vol. 2, No. 4 (2009)

begin

p := Check(False); T := Check(—p1 A —p2);
while 7 Z p do

p:=pUT; 7:= Check(p1) N Pre(A, p)

od;

return p.

end

To see how the procedure NU works, consider the result of the first circle: p
is the set of states such that for each ¢ € p implies ¢ = (—p1 A —2) V (1 A
{A) O (—p1 A —p2)). p consists of states where A can guarantee 1l p2 being
false, as long as paths whose length is no more than 2 are considered. The ending
condition 7 C p indicates that 7 will not change in further circles, and therefore
already contains all states we are searching for. Each circle in the procedure increases
length of considered paths from n ton + 1.

Correctness of the algorithm can be proved by induction on the structure of an
input formula. Termination is guaranteed, because the game structure being checked
is finite.

It is easy to check that the complexity of CATL model checking is the same as
that of ATL’s. The last proposition is proved in the same way of theorem 5.2 in [1].

Proposition 5.1 The model checking problem for CATL is PTIME-complete, and
can be solved in time O(m - 1) for a game structure with m transitions and an CATL
formula of length 1.

For SATL model checking, it is the problem of finding the set of states in a
game structure where a given SATL formula is satisfied. We also extend the ATL
symbolic model checking algorithm for the purpose. The procedure Check takes
a SATL formula ¢ as its argument and returns exactly the set of those states that
satisfies . Check is defined inductively over the structure of SATL formulas. The
cases for propositions, Boolean connectives, and cooperation operator ((A)) are the
same as before. ‘

For the operator ({A))qe, let Sub be a function that, when given a set of players
A, returns a queue of immediate subsets of A, that is, a queue of subsets of A with
length |A| — 1. Check({{A))qe) is implemented by the following procedure:

begin

p = Check((A))
foreach A’ € Sub(A) do
od

return p,

