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Preface

The aim of this book is to teach you the essentials of spectral collocation
methods with the aid of 40 short MATLAB® programs, or “M-files.”* The
programs are available online at http://www.comlab.ox.ac.uk/oucl/work/
nick.trefethen, and you will run them and modify them to solve all kinds
of ordinary and partial differential equations (ODEs and PDEs) connected
with problems in fluid mechanics, quantum mechanics, vibrations, linear and
nonlinear waves, complex analysis, and other fields. Concerning prerequisites,
it is assumed that the words just written have meaning for you, that you have
some knowledge of numerical methods, and that you already know MATLAB.

If you like computing and numerical mathematics, you will enjoy working
through this book, whether alone or in the classroom—and if you learn a few
new tricks of MATLAB along the way, that’s OK too!

Spectral methods are one of the “big three” technologies for the numeri-
cal solution of PDESs, which came into their own roughly in successive decades:

1950s: finite difference methods
1960s: finite element methods
1970s: spectral methods

Naturally, the origins of each technology can be traced further back. For
spectral methods, some of the ideas are as old as interpolation and expan-

*MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Na-

tick, MA 01760-2098, USA, tel. 508-647-7000, fax 508-647-7001, info@mathworks.com,
http://www.mathworks.com.



X : Preface

sion, and more specifically algorithmic developments arrived with Lanczos as
early as 1938 [Lan38, Lan56] and with Clenshaw, Elliott, Fox, and others in
the 1960s [FoPa68]. Then, in the 1970s, a transformation of the field was
initiated by work by Orszag and others on problems in fluid dynamics and
meteorology, and spectral methods became famous. Three landmarks of the
early modern spectral methods literature were the short book by Gottlieb and
Orszag [GoOr77], the survey by Gottlieb, Hussaini, and Orszag [GHO84], and
the monograph by Canuto, Hussaini, Quarteroni, and Zang [CHQZ88]. Other
books have been contributed since then by Mercier [Mer89], Boyd [Boy00]
(first edition in 1989), Funaro [Fun92], Bernardi and Maday [BeMa92}, Forn-
berg [For96], and Karniadakis and Sherwin [KaSh99).

If one wants to solve an ODE or PDE to high accuracy on a simple domain,
and if the data defining the problem are smooth, then spectral methods are
usually the best tool. They can often achieve ten digits of accuracy where a
finite difference or finite element method would get two or three. At lower
accuracies, they demand less computer memory than the alternatives.

This short textbook presents some of the fundamental ideas and techniques
of spectral methods. It is aimed at anyone who has finished a numerical
analysis course and is familiar with the basics of applied ODEs and PDEs. You
will see that a remarkable range of problems can-be solved to high precision
by a few lines of MATLAB in a few seconds of computer time. Play with the
programs; make them your own! The exercises at the end of each chapter will
help get you started.

I would like to highlight three mathematical topics presented here that,
while known to experts, are not usually found in textbooks. The first, in
Chapter 4, is the connection between the smoothness of a function and the
rate of decay of its Fourier transform, which determines the size of the aliasing
errors introduced by discretization; these connections explain how the accu-
racy of spectral methods depends on the smoothness of the functions being
approximated. The second, in Chapter 5, is the analogy between roots of poly-
nomials and electric point charges in the plane, which leads to an explanation
in terms of potential theory of why grids for nonperiodic spectral methods
need to be clustered at boundaries. The third, in Chapter 8, is the three-way
link between Chebyshev series on [—1, 1], trigonometric series on [, 7], and
Laurent series on the unit circle, which forms the basis of the technique of
computing Chebyshev spectral derivatives via the fast Fourier transform. All
three of these topics are beautiful mathematical subjects in their own right,
well worth learning for any applied mathematician.

If you are determined to move immediately to applications without paying
too much attention to the underlying mathematics, you may wish to turn
directly to Chapter 6. Most of the applications appear in Chapters 7-14.

Inevitably, this book covers only a part of the subject of spectral meth-
ods. It emphasizes collocation ( “pseudospectral”) methods on periodic and on
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Chebyshev grids, saying next to nothing about the equally important Galerkin
methods and Legendre grids and polynomials. The theoretical analysis is very
limited, and simple tools for simple geometries are emphasized rather than
the “industrial strength” methods of spectral elements and Ap finite elements.
Some indications of omitted topics and other points of view are given in the
Afterword.

A new era in scientific computing has been ushered in by the development
of MATLAB. One can now present advanced numerical algorithms and so-
lutions of nontrivial problems in complete detail with great brevity, covering
more applied mathematics in a few pages than would have been imaginable a
few years ago. By sacrificing sometimes (not always!) a certain factor in ma-
chine efficiency compared with lower level languages such as Fortran or C, one
obtains with MATLAB a remarkable human efficiency—an ability to modify
a program and try something new, then something new again, with unprece-
dented ease. This short book is offered as an encouragement to students,
scientists, and engineers to become skilled at this new kind of computing.
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A Note on the MATLAB Programs

The MATLAB programs in this book are terse. I have tried to make each one
compact enough to fit on a single page, and most often, on half a page. Of
course, there is a message in this style, which is the message of this book: you
can do an astonishing amount of serious computing in a few inches of computer
code! And there is another message, too. The best discipline for making sure
vou understand something is to simplify it, simplify it relentlessly.

Without a doubt, readability is sometimes impaired by this obsession with
compactness. For example, I have often combined two or three short MATLAB
commands on a single program line. You may prefer a looser style, and that
is fine. What’s best for a printed book is not necessarily what’s best for one’s
personal work.

Another idiosyncrasy of the programming style in this book is that the
structure is flat: with the exception of the function cheb, defined in Chapter 6
and used repeatedly thereafter, I make almost no use of functions. (Three fur-
ther functions, chebfft, clencurt, and gauss, are introduced in Chapters 8
and 12, but each is used just locally.) This style has the virtue of emphasiz-
ing how much can be achieved compactly, but as a general rule, MATLAB
programmers should make regular use of functions.

Quite a bit might have been written to explain the details of each program,
for there are tricks throughout this book that will be unfamiliar to some read-
ers. To keep the discussion focused on spectral methods, I made a deliberate
decision not to mention these MATLAB details except in a very few cases.
This means that as you work with the book, you will have to study the pro-
grams, not just read them. What is this “pol2cart” command in Program 28

XV
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(p. 120)? What’s going on with the index variable “b” in Program 36 (p. 142)?
You will only understand the answers to questions like these after you have
spent time with the codes and adapted them to solve your own problems. I
think this is part of the fun of using this book, and I hope you agree.

The programs listed in these pages were included as M-files directly into
the ¥TEX source file, so all should run correctly as shown. The outputs
displayed are exactly those produced by running the programs on my machine.
There was a decision involved here. Did we really want to clutter the text
with endless formatting and Handle Graphics commands such as fontsize,
markersize, subplot, and pbaspect, which have nothing to do with the
mathematics? In the end I decided that yes, we did. I want you to be able
to download these programs and get beautiful results immediately. Equally
important, experience has shown me that the formatting and graphics details
of MATLAB are areas of this language where many users are particularly
grateful for some help.

My personal MATLAB setup is nonstandard in one way: I have a file
startup.m that contains the lines

set(O,’defaultaxesfontsize’,12,’defaultaxeslineﬁidth’,.7,...
’defaultlinelinewidth’, .8, ’defaultpatchlinewidth’,.7).

This makes text appear by default slightly larger than it otherwise would, and
lines slightly thicker. The latter is important in preparing attractive output
for a publisher’s high-resolution printer.

The programs in this book were prepared using MATLAB versions 5.3
and 6.0. As later versions are released in upcoming years, unfortunately, it is
possible that some difficulties with the programs will appear. Updated codes
with appropriate modifications will be made available online as necessary.

To learn MATLAB from scratch, or for an outstanding reference, I recom-
mend SIAM’s new MATLAB Guide, by Higham and Higham [HiHi00].
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1. Differentiation Matrices

Our starting point is a basic question. Given a set of grid points {z;} and
corresponding function values {u(z;)}, how can we use this data to approxi-
mate the derivative of ©? Probably the method that immediately springs to
mind is some kind of finite difference formula. It is through finite differences
that we shall motivate spectral methods.

To be specific, consider a uniform grid {zi,...,zny}, with z;41 —z; = h
for each j, and a set of corresponding data values {uy,...,un}:

Uy U2 Un

Iy T2 TN

Let w; denote the approximation to u'(z;), the derivative of u at z;. The
standard second-order finite difference approximation is

Ujp1 — Uj1
w; = Lt = Y1 1.1
which can be derived by considering the Taylor expansions of u(z;;;) and
u(z;_1). For simplicity, let us assume that the problem is periodic and take
up = uy and u; = uy4,- Then we can represent the discrete differentiation

1



2 Spectrai Methods in MATLAB

process as a matrix-vector multiplication,

[ °

N
™)

_1\ (Ul\

N

[
=

(1.2)

0

\wN \% —% )\UN}

(Omitted entries here and in other sparse matrices in this book are zero.)
Observe that this matrix is Toeplitz, having constant entries along diagonals;
Le., a;; depends only on i — j. It is also circulant, meaning that a;; depends
only on (i — 7) (mod N). The diagonals “wrap around” the matrix.

An alternative way to derive (1.1) and (1.2) is by the following process of
local interpolation and differentiation:

S o=

Forj=1,2,...,N:

® Let p; be the unique polynomial of degree < 2 with p;(z;-1) = u,_,, pi(x;) =
uj, and p;(Tjp1) = Uj41.

* Set w; = pl(x;).

It is easily seen that, for fixed j, the interpolant p; is given by

pi(r) = uj10_1(2) + ujao(z) + ujr1a:(z),

where a_(z) = (z — 2;)(z — 7;11)/2h?, ao(z) = —(z — 25_1)(x — 7;4,)/h2,
and a;(z) = (z — z;_1)(z — z;)/2h?. Differentiating and evaluating at r = Zj
then gives (1.1).

This derivation by local interpolation makes it clear how we can generalize
to higher orders. Here is the fourth-order analogue:

Forj=1,2,...,N:

e Let p; be the unique polynomial of degree < 4 with Pi(Tjea) = Ujio,
pj(xjil) = Ujx1, and Pj(xj) = Uj.
e Set w]' :p;(.’L'J)

Again assuming periodicity of the data, it can be shown that this prescription
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amounts to the matrix-vector product

[ ( S AV A
3
= h7! 0 (1.3)
sz\r} \ } -% ) \un /

This time we have a pentadiagonal instead of tridiagonal circulant matrix.

The matrices of (1.2) and (1.3) are examples of differentiation matrices.
They have order of accuracy 2 and 4, respectively. That is, for data u; ob-
tained by sampling a sufficiently smooth function u, the corresponding discrete
approximations to u'(z;) will converge at the rates O(h?) and O(h*) as h — 0,
respectively. One can verify this by considering Taylor series.

Our first MATLAB program, Program 1, illustrates the behavior of (1.3).
We take u(z) = e¥"@) to give periodic data on the domain [, 7]:

—T X1 T2 IN=T

The program compares the finite difference approximation w; with the exact
derivative, e*"(%i) cos(z;), for various values of N. Because it makes use of
MATLAB sparse matrices, this code runs in a fraction of a second on a work-
station, even though it manipulates matrices of dimensions as large as 4096
[GMS92]. The results are presented in Output 1, which plots the maximum
error on the grid against N. The fourth-order accuracy is apparent. This is
our first and last example that does not illustrate a spectral method!

We have looked at second- and fourth-order finite differences, and it is
clear that consideration of sixth-, eighth-, and higher order schemes will lead to
circulant matrices of increasing bandwidth. The idea behind spectral methods
is to take this process to the limit, at least in principle, and work with a
differentiation formula of infinite order and infinite bandwidth—i.e., a dense
matrix [For75]. In the next chapter we shall show that in this limit, for an
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Program 1

% pl.m - convergence of fourth-order finite differences

% For various N, set up grid in [-pi,pi] and function u(x):
Nvec = 2.7(3:12);
clf, subplot(’position’,[.1 .4 .8 .5])
for N = Nvec
h = 2*pi/N; x = ~pi + (1:N)’*h;
u exp(sin(x)); uprime = cos(x).*u;

]

% Construct sparse fourth-order differentiation matrix:

e = ones(N,1);

D = sparse(1:N,[2:N 1],2*e/3,N,N)...
- sparse{1:N,[3:N 1 2],e/12,N,N);

D = (D-D’)/h;

% Plot max(abs(D*u-uprime)):

error = norm{D*u-uprime,inf);

loglog(N,error,’.’, ’markersize’,15), hold on
end
grid on, xlabel N, ylabel error
title(’Convergence of fourth-order finite differences’)
semilogy (Nvec,Nvec." (-4),’-=")
text(106,5e-8,’N"{-4}’,’fontsize’,18)

QOutput 1
0 Convergence of fourth—order finite differences
10 : ' '7'f"f "7' .f!T.!! M <
107° {
<]
g
|
107°F
!
107 ——
10 10°

N

Output 1: Fourth-order convergence of the finite difference differentiation pro-
cess (1.3). The use of sparse matrices permits high values of N.
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infinite equispaced grid, one obtains the following infinite matrix:

il
o
AR
|
W= = = O — N W
—
—
=
g

\ : /

This is a skew-symmetric (DT = —D) doubly infinite Toeplitz matrix, also
known as a Laurent operator [Hal74, Wid65]. All its entries are nonzero except
those on the main diagonal.

Of course, in practice one does not work with an infinite matrix. For a
finite grid, here is the design principle for spectral collocation methods:

e Let p be a single function (independent of j) such that p(x;) = u; for all j.
o Set w; = p'(z;).

We are free to choose p to fit the problem at hand. For a periodic domain, the
natural choice is a trigonometric polynomial on an equispaced grid, and the
resulting “Fourier” methods will be our concern through Chapter 4 and inter-
mittently in later chapters. For nonperiodic domains, algebraic polynomials
on irregular grids are the right choice, and we will describe the “Chebyshev”
methods of this type beginning in Chapters 5 and 6.

For finite NV, taking NN even for simplicity, here is the N x N dense matrix
we will derive in Chapter 3 for a periodic, regular grid:

. 1 3h

2 C0t7

i 2h
—3cot ¢
1 ih

. 3 cot o
Dy = 0 . (1.5)
1 1h
-3 cot 9

1 2h
5 cot >

1 3h
K -3 cot 5
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Program 2

% p2.m ~ convergence of periodic spectral method (compare pi.m)

% For various N (even), set up grid as before:
clf, subplot(’position’,[.1 .4 .8 .5])

for N = 2:2:100;
h = 2%pi/N;
x = -pi + (1:N)’#*h;
u = exp(sin(x)); uprime = cos(x).*u;

% Construct spectral differentiation matrix:
column = [0 .5%(-1)."(1:N-1).*cot((1:N-1)*h/2)];
D = toeplitz(column,column([1 N:-1:2]));

% Plot max(abs(D*u-uprime)):

error = norm(D*u-uprime,inf);

loglog(N,error,’.’, 'markersize’,15), hold on
end ’
grid on, xlabel N, ylabel error
title(’Convergence of spectral differentiation’)

Output 2

0 Convergence of spectral differentiation

10 e T T T T T

T H R T T T LR

error

10'
N

Output 2: “Spectral accuracy” of the spectral method (1.5), until the rounding
errors take over around 1071, Now the matrices are dense, but the values of
N are much smaller than in Program 1.



