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Preface

edition of Molecular Biology of the Gene appeared four years ago. The first is in

the cost and influence of genome sequencing; the second is the explosion in our
appreciation of RNA as a regulatory molecule; and the third is the widespread touting
of systems biology as the future of our field in the postgenomic era. The influence of
all three developments is evident in this, the sixth edition.

Numerous species—together with one of the authors—have had their genomes se-
quenced in the past four years. And currently each genome can be done at a cost al-
most 500-fold lower than was possible in 2003. In that year we knew the sequences of
the model systems—yeast, worm, Arabidopsis, fly, mouse, human—and perhaps two
or three other animals. Now we have a much wider representation from the tree of
life: we have the chimp, rat, and honeybee genomes; the cat and dog; several more in-
sects; rice; the sea anemone; the opossum; and many others besides. And we have
many more representatives of each group: as an example, 13 Drosophila species have
by now been sequenced. And finally, as noted above, we have entered the era of the
individual human genome—as well as James Watson’s, Craig Venter’s genome has
been completely sequenced.

Along with this mushrooming in the amount of sequencing, the influence of se-
quencing is becoming ever more apparent and routine. There are several cases in this
new edition where evolutionary and mechanistic arguments are based on the ability
to compare genomes—in some cases between closely related species, in others more
distantly.

Genome sequences have contributed to the second big development—the growing
understanding of all that RNA does. The extent and importance of alternative splicing
and the widespread use of regulatory RNAs represent areas where the text has been
extensively revised.

Systems biology remains a rather ill-defined term, evoking somewhat different
things for different people. For some it reflects high-throughput methodology, for ex-
ample; for others it reflects mathematical modeling of biological systems. In this edi-
tion, we examine one aspect of this emerging field—the one with most obvious and
immediate significance to topics covered in this book—namely, the representation
and modeling of gene regulatory networks.

THREE SIGNIFICANT CHANGES HAVE TAKEN PLACE in molecular biology since the fifth

Organization of the Book

Although much has changed, many core values and organizing principles of the book
have not. Thus, the new edition retains the structure of the last, being divided into
five parts.
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Part 1 lays the groundwork for what follows—it summarizes the history of genetics
and molecular biology and explains the chemical principles that determine the struc-
ture and function of macromolecules.

Part 2 covers the organization and maintenance of the genetic material. Beginning
with a description of the structures of DNA and RNA, it also covers the organization
of genomes in chromosomes and explains DNA replication, recombination, and re-
pair.

Part 3 deals with expression of the genome through transcription, splicing, and
translation.

Part 4 is about how the expression of genes within the genome is regulated. This
includes mechanisms of transcriptional regulation, the role of regulatory RNAs in
controlling gene expression, gene regulation in the control of development, and how
changes in regulation underlie much of evolution. Finally, we consider genome-wide
studies of gene expression and how gene regulatory networks are modeled and ana-
lyzed in the emerging fields of systems and synthetic biology.

Part 5 comprises two chapters: one on the techniques of molecular biology, ge-
nomics, proteomics, and bioinformatics and the other on the model organisms whose
study has revealed many of the underlying principles of molecular biology.

As well as revision of each chapter, there are significant additions to this edition.
Most notably, there are two new chapters and a new range of boxed features.

New Chapters and Boxes

Chapter 18: Regulatory RNAs One of the striking developments since the fifth edition is
the extent to which RNAs are found to be regulators of gene expression. In this chap-
ter, we cover everything from riboswitches and small RNAs in bacteria, through RNA
interference and microRNAs in eukaryotes, to the role of RNA regulators in X-chro-
mosome inactivation. As well as mechanistic details of how these regulators work, we
discuss how they were discovered and how they have afforded us new ways to ma-
nipulate gene expression artificially.

Chapter 20: Genome Analysis and Systems Biology The genomes of many animals have
been sequenced and found to be strikingly similar. This finding emphasizes that it is
largely differences in the regulation, rather than the identity, of the genes within a
genome that determine phenotype. Techniques now exist to study genome-wide gene
expression patterns; we discuss how these techniques work and what they have re-
vealed. In the second half of the chapter, we learn about the representation of gene
regulatory networks as so-called wiring diagrams (an example is shown on the cover
of this book as is discussed below). These diagrams emphasize the information flow
and types of decision-making steps within such pathways.

Boxes The sixth edition includes an array of new boxes, each assigned to one of four
color-coded categories:

e Key exPERIMENTS describe critical experiments in each field, ranging from the historical
to the very recent. Without disrupting the narrative flow of the main text, they give
students insight into how scientific problems are solved.

e 7rcHNIQUES describe techniques of particular relevance to the chapter in question,
complementing the more general techniques described in the last two chapters of

the book.

e MeDICAL CONNECTIONS highlight links between the basic molecular biology described
and a variety of human diseases. These boxes emphasize how basic research in-
forms current medical understanding.

e v concrrr explore selected concepts in more depth to allow students a
glimpse of cutting-edge ideas.



As well as being included in the detailed table of contents, there is a separate list-
ing of all the Boxes by topic on page xxxi.

Media Icons New web references and icons within the text direct students to explore
the animations and structural tutorials on the companion website.

Supplements

Companion Website www.aw-bc.com/watson

The Companion Website combines the contents from the previous edition’s “Student
Media” CD-ROM into one fully integrated resource that helps students better under-
stand complex structures and molecular interactions. Two new structural tutorials on
Argonaute and RecBCD have been added in the sixth edition in addition to the popu-
lar structural media tutorials of the previous edition.

1ll. RuvA Tetramer-Holliday Junction DNA

« In tetrameric RuvA, each monomer is a lobe of the
symmetrical (r-rer. The domzin | beta barrels of
each monomer are positioned centrally, and domains
and |/ are located peripherally.

Examining the charge distribution of atoms over the
surface of the RuvA tetramer, it is clear that the DNA
binding surface is largely positively charged (basic),
whereas the opposite surface is largely negatively
charged (acidic). The s , and red colors
represent relatively negatively charged atoms and the
oreen and biue colors represent more positively
charged atoms (red and blue indicate acidic or basic
residues), The relative positive charge of the DNA
binding surface attracts the negatively charged DNA

backbona.

An exception to the mostly basic surface of the DNA
binding side of the RuvA tetramer is an eight residue
central pin” containing glutamate™® and
E te”" from each monomer. This negatively
charged center may repel the negatively charged
oxygens of the DNA backbone, driving the DNA away
from the center of the Holliday junction.

A number of residues that interact directly or
indirectly (via water molecules) with the DNA backbone
line the channels in which Holliday junction DNA is
bound
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return to beginning

IV. References

Ariyoshi, M., Nishino, T., lwasaki, H., Shinagawa, H.,
Morikawa, K.: Crystal Structure of the Holliday Junction
DNA in Complex with a Single Ruva Tetramer
Proc.Nat.Acad. Sci. 97: 8257-8262 (2000).

Hargreaves, D., Rice, D. W., Sedelnikova, S. £,
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Glossary
An online glossary defines terms that appear in bold in the text.

Instructor Resource CD-ROM 978-0-3215-2766-0/0-3215-2766-6

This dual-platform CD-ROM contains all art and tables from the book in jpeg and
PowerPoint format in high-resolution (150-dpi) files. This CD-ROM also contains the
answers to the end-of-chapter Critical Thinking questions posed to students on the
Companion Website.

Transparency Acetates 0-3215-3639-8/978-0-3215-3639-6
The transparency package features approximately 300 four-color illustrations from the
text selected by the authors.
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Cover Design and Part-Opener Photographs

Cover image The cover is a representation from systems biology of a frequently ob-
served motif in the circuitry governing gene expression (see Chapter 20). The motif,
known as an incoherent feed-forward loop, consists of two regulatory genes, A and B,
and a target gene C whose expression is indicated as the output. In response to an in-
put, gene A is turned on. The gene A product is an activator both of the target gene C
and of the second regulatory gene B. The gene B product is a repressor of gene C. The
representation “AND” in the figure indicates that the circuit operates with the logic of
a so-called AND gate, a term borrowed from electrical engineering, which means that
the output requires (in the case shown) the presence of the gene A activator AND the
absence of the gene B repressor. Incoherent feed-forward loops have the property of
causing target genes to be expressed in a pulse. That is, gene C is turned on by the ac-
tivator in response to the input and then switched off by the delayed accumulation of
the repressor.

The cover design of this, the sixth edition, consciously mimics that of the first edi-
tion, published by Benjamin (a forerunner of Benjamin Cummings) in 1965. That
cover, together with those of the second through fifth editions, is reproduced on the
back cover of this edition. The first edition cover was designed by Bill Prokos, a New
York City painter, who in 1965 was working on the art program of another Benjamin
book, Bioenergetics, by Albert Lehninger. Benjamin saw similarities in the ambition
and style of these two books and so gave both essentially the same cover design. The
Lehninger book, however, was dominated by a red (rather than a blue) square, and, in
place of the turn of DNA double helix seen on MBoG, Bioenergetics carried an ATP
molecule. Publication of both books was celebrated with a joint party, held in Woods
Hole that year.

Cold Spring Harbor Laboratory Photographs As in the previous edition, each part opener in-
cludes a few photographs, some newly added to this edition. These pictures, selected
from the archives of Cold Spring Harbor Laboratory, were all taken at the lab, the major-
ity during the Symposia hosted there almost every summer since 1933. Captions iden-
tify who is in each picture and when it was taken. Many more examples of these his-
toric photos can be found at the CSHL archives website (http://archives.cshl.edu/).
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