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Preface

What is advanced mathematics?

Advanced mathematics that we refer to contains mainly calculus. Calculus is the math-
ematics of motion and change. [t was first invented to meet the mathematical needs of the
scientists of the sixteenth and seventeenth centuries, needs that were mainly mechanical in
nature, Differential calculus Deals with the problem of calculating rates of change. It ena-
bles people to define slopes of curves, to calculate velocities and accelerations of moving
bodies,etc.. Integral calculus Deals with the problem of determining a function from infor-
mation about its rate of change. It enables people to calculate the future location of a hody
from its present position and a knowledge of the forces acting on it,to find the areas of ir-
regular regions in the plane, to measure the lengths of curves,and so on. Now, advanced
mathematics becomes one of the most important courses of the college students in natural

science and engineering.
About this book

Although several excellent textbooks in English language concerned with advanced
mathematics that came from abroad have been published in China,their contents do not am-
ply meet the requirements presented by the Ministry of Education for advanced mathemat-
ics, So they do not amply accord with the teaching requirements of domestic universities.
Furthermore, few textbooks in English language concerned with advanced mathematics,
which are written by domestic authors, can be found in locality, All these factors inspire us
to write out this book,in order to satisfies the increasing bilingual-teaching demand of uni-
versities in China.

All the authors have been teaching this course by bilingual languages for many years.
They have much experience in both course-teaching and bilingual-teaching. They know the
obstacles encountered by Chinese students in learning this course in English. Moreover,all
the authors had experience visiting abroad. The contents of functions,space analytic geom-
etry and differential calculus were jointly written by Associate Professors Wenbo Zhang,
Xuelt Wang and Ping Zhu, while the contents of series, differential equations and integra-

1 .
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tion calculus jointly by Professor Wenbao Ai and Associate Professor Jianhua Yuan. The
whole book was proofread by Professor -Hongxiang Sun., Because of the careful checking
and proofing by us,the authors believe this book to be almost error-free. For any errors re-
maining,the authors would be grateful if they were sent to: jhyuan_bupt@yahoo. com. cn.

Acknowledgements

The authors wish to thank all the person who have been involved in producing the
book. QOur special thanks ga to the Science School and the International School of BUPT
for their financial support on producing the book by teaching-reform grants.

To the students

Learning advanced mathematics requires a lot of hard work and effort on your part,
No one else can do this for you,and there are no shortcuts. However, if you work consist-
ently and diligently through this book you will succeed. Enjoy this book,and good luck for

you!
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Chapter 0

Preliminary Knowledge

Overview

In this chapter we will introduce some most important concepts which will be widely
used in the following context,
Polar coordinate system plays an important role while denoting points on a plane, de-

scribing functions and etc. ,just as the Cartesian coordinate does.

0.1 Polar Coordinate System

In mathematics,the polar coordinate system[ #& 8 #% & ]is a two-dimensional coordinate
system in which each point on a plane is determined by an angle and a distance. The polar
coordinate system is especially useful in situations where the relationship between two
points is most easily expressed in terms of angles and distance; in the more familiar Carte-
sian or rectangular coordinate system,such a relationship can only be found through trigo-
nometric formulae,

As the coordinate system is two-dimensional, each point is determined by two polar co-
ordinates: the radial coordinate and the angular coordinate see Figure 0. 1. 1. The radial co-
ordinate (usually denoted as r or p) denotes the point’s distance from a central point
known as the pole [#% f& ](equivalent to the origin in the Cartesian system). The angular
coordinate (also known as the polar angle [#& ff Jor the azimuth angle [ 7 {% #1],and usual-
ly denoted by 8 or ¢) denotes the positive or anticlockwise [ ¥ B} 4t J(counterclockwise) an-
gle required to reach the point from the 0° ray or polar axis [#& %1 ](which is equivalent to

the positive z-axis in the Cartesian coordinate plane).
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0.1.1 Plotting Points with Polar Coordinates

Each point in the polar coordinate system can be described with the two polar coordi-
nates, which are usually called r (or p,the radial coordinate) and 8 (¢the angular coordinate,
polar angle ,or azimuth angle , sometimes represented as ¢ or ¢t). The r coordinate repre-
sents the radial distance from the pole,and the ¢ coordinate represents the anticlockwise
(counterclockwise) angle from the 0° ray (sometimes called the polar axis), which are

known as the positive z-axis on the Cartesian coordinate planet'! (See Figure 0. 1. 2).

Figure 0. 1.1

A2, 60°%)

B(3, 210%)

Figure 0.1.2

0.1.2 Converting between Polar and Cartesian Coordinates

The two polar coordinates r and 8 can be converted to the Cartesian coordinates = and
y by using the trigonometric functions sine and cosine:
. 2 .
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x=r cosf,
y=r sin §.
while the two Cartesian coordinates z and y can be converted to polar coordinate r by r
=./z*+y* (by a simple application of the Pythagorean theorem).
To determine the angular coordinate 8, the following two ideas must be considered:
¢ For r=0,0 can be set to any real value;
s For »#£0,to get a unique representation for §,it must be limited to an interval of
size 2x. Conventional choices for such an interval are {0,2x) and (—=,x] .
To obtain § in the interval [0,2x),the following may be used (arctan denotes the in-

verse of the tangent function) .

arctan(%) , if x>0 and y=0
arctan(%)-l—Zn, if z>>0 and y<<0
g=< arctan(% ) +=x, if x<C0

%, if z=0 and y>0
3n e
5 if x=0 and y<{0

The readers can also give out the formulas to obtain 4 in the interval (—x,x] .
Example 0. 1. 1 (Circle with center at (0,0) and radius a). The usual way we express a cir-
cle with center at (0,0) and radius a>>0 in Cartesian coordinates is the set of all points

which satisfies the following equation

Vit =a or 2+ y*=a* (a>0) .

This expression can be very simple while we use polar coordinates. In fact, since the
circle is a set contains all points which have the same distance to the point (0,0),if we take
the origin of the Cartesian coordinated as our pole and z-axis as our polar axis, then the cir-
cle can be expressed as

r(@)=a (a>0).
The general equation of a circle with a center (#,,8,) and radius a>>0 is
r* —2rr, cos (8—8,) +ri=a’.
Example 0.1.2 (Line). Radial lines (those running through the pole) are represented by

the equation
6= & »
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where 6, is the angle of elevation of the line; that is,f, —arctan m where m is the slope of
the line in the Cartesian coordinate system. The none-radial line that crosses the radial line
6=0, perpendicularly at the point (r,,6,) has the equation

(@) =r; sec (0—8,) .
Example 0. 1.3 (Polar rose). A polar rose is a famous mathematical curve that looks like a
petalled flower,and that can be expressed as a simple polar equation,

r(@) =a cos (k-+8,)

for any constant @, (including 0). If k is an integer, these equations will produce a k-

petalled rose if £ is odd,or a 2k-petalled rose if & is even. If % is rational but not an integer,
a rose-like shape may form but with overlapping petals. Note that these equations never
define a rose with 2,6,10,14,etc. petals. The variable a represents the length of the petals
of the rose (See Figure 0. 1. 3).

Figure 0. 1. 3

P Reading Material: History of polar system coordinate

The concepts of angle and radius were already used by ancient people of the 1st millen-
nium BCE @. The astronomer Hipparchus (190-120 BCE) created a table of chord func-
tions giving the length of the chord for each angle,and there are references to his using po-
lar coordinates in establishing stellar positions. On Spirals, Archimedes described the Ar-
chimedean spiral,a function whose radius depends on the angle. The Greek work, however,

did not extend to a full coordinate system.

@ The Common Era,also known as the Current Era or the Christian Era , abbreviated CE,is the period of time be-
ginning with year 1 of the Gregorian calendar, Earlier years are abbreviated BCE, and described as “before the Common/
Current/Christian Era”. The abbreviations are sometimes written with small capital letters, or with periods Ce. g. ,“bce”
or “C.E. "),

.4-
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There are various accounts of the introduction of polar coordinates as part of a formal
coordinate system. The full h’istory of the subject was described in Harvard professor Jul-
ian Lowell Coolidge’ s Origin of Polar Coordinates®’. Grégoire de Saint-Vincent and
Bonaventura Cavalieri independently introduced the concepts in the mid-seventeenth centu-~
ry. Saint-Vincent wrote about them privately in 1625 and published his work in 1647, while
Cavalieri published his work in 1635 with a corrected version appearing in 1653. Cavalieri
first used polar coordinates to solve a problem relating to the area within an Archimedean
spiral. Blaise Pascal subsequently used polar coordinates to calculate the length of parabolic arcs.

In Method of Fluxions (written in 1671, published in 1736), Sir Isaac Newton exam-
ined the transformations between polar coordinates, which he referred to as the “Seventh

(4] In the journal Acta Erudito-

Manner; For Spirals”, and nine other coordinate systems
rum (1691),Jakob Bernoulli used a system with a point on a line,called the pole and polar
axis respectively. Coordinates were specified by the distance from the pole and the angle
from the polar axis. Bernoulli’s work extended to finding the radius of curvature of curves
expressed in these coordinates.

The actual term polar coordinates has been attributed to Gregorio Fontana and was
used by 18th-century Italian writers. The term appeared in English in George Peacock’s

1816 translation of Lacroix’s Dif ferential and Integral Calculus®™3.

Alexis Clairaut was
the first to think of polar coordinates in three dimensions,and Leonhard Euler was the first
to actually develop them. 4

P Reading Material: The applications of polar coordinate system

Polar coordinates are two-dimensional and thus they can be used only in the place
where point positions lie on a single two-dimensional plane. They are most appropriate in
any context where the phenomenon being considered is inherently tied to direction and
length from a center point. For instance,the examples above show how elementary polar e-
quations suffce to define curves — such as the Polar rose — whose equation in the Carte-
sian coordinate system would be much more intricate. Moreover,many physical systems —
such as those concerned with bodies moving around a central point or with phenomena orig-
inating from a central point — are simpler and more intuitive to model using polar coordi-
nates. The initial motivation for the introduction of the polar system was the study of cir-

cular and orbital motion.
Position and navigation

Polar coordinates are used often in navigation,as the destination or direction of travel

can be given as an angle and distance from the object being considered. For instance, air-
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