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Lecture 1 Introduction, Kinematics

1.1 Objective of mechanics — motion

Mechanics studies the motion of an object or a system of objects. By motion
we mean an object changes its position with respect to another object or the
objects in a system change their relative positions. The position in one
dimensional case can be simply defined by the distance between the two objects.
However, in case of more than one-dimension it includes two factors: distance
and direction, which correspond to the concepts of length and angle,
respectively.

Since the position is always relative, it is meaningless to say the position of
a single object without specifying its spatial relation to another object, so the
motion is relative too. There is no “absolute” motion or motion by a single
object itself. Rest can be considered as the limiting case of motion — the rate of
position change is zero.

Any motion happens and proceeds in space and time. Nothing can go beyond
these “containers”. In classic mechanics, space and time are independent and
both are independent of the processes happened in them. However, Einstein’s
theory of relativity indicates that this is untrue, space and time are related to
each other and in fact affected by the processes happened in them.

Mechanics studies how to describe the motion (kinematics) and why the
motion is changed (dynamics). Force is understood as the cause or the reason
that any object changes its motion or state. A special topic is called statics which
studies the balance of forces, or how an object or a system of objects can stay
rest or equilibrium under the influence of more than one forces.
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1.2 System of reference

As the position is relative by nature, we must have a reference body to
define the position or motion of an object. This is the system of reference. Since
an object usually has different spatial relations with different objects, its motion
looks different from different systems of reference. Some differences may even
have their dynamical origin. however, we shall not discuss this problem in
kinematics.

We need a coordinate system to describe the position of an object for a
reference body. The most commonly used ones are rectangular, spherical or
cylindrical coordinate system. All these are three dimensional. In two-
dimensional case, we have plane polar coordinate system. The choice of
coordinate system is rather arbitrary in kinematics. We prefer the system in
which the motion looks simpler. For example, we choose a rectangular
coordinate system for the motion on a straight line, or a polar coordinate system
for a circular motion. The transformation from one coordinate system to another
is a mathematical event, which will be discussed in the next lecture.

1.3 Position and trajectory

The simplest object is a particle; its dimension is small in comparison with
its distance to other objects. In a rectangular coordinate system, the position of
a particle is denoted by a vector:

r=xe + xe t xze, (1.1)

where e,, e;, e; are the basic vectors of the coordinate system. They have a

unit length and are normally perpendicular to each other. «;(i=1, 2, 3) are

the coordinates of the particle. If the coordinates vary with time ¢, or «x; (and

thus r) are the functions of time ¢, then we have a change in the position of the
particle or a motion. This will draw a trajectory (curve) in space;

r(t) = x;(t)e, + x,(t)e, + x3(t)es 1.2

All the information about the motion is included in this trajectory or the function
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r(t). It is important to realize that all the functions «;(¢) are continuous and
differentiable as the space and time (and thus motion) are continuous by nature.
The differential properties of r (t) represent the fundamental quantities of

kinematics.

1.4 Velocity

The most fundamental quantity in kinematics is the velocity v, which is the
first order derivative of r(t) with respect to time ¢.

v(t) = d—dtr<t> - d—dtxl(t)el + a‘itxzmez +d%x3<t>e3 (1.3)
or, if we write v in component form:
v(t) = vi(t)e; + v,()e; + vy3(t)e; (1.4
where
_dx L
v (t) = i (1 =1,2,3) (1.5

It is important to realize that the velocity v thus defined is belonging to an
instant, not a time interval. For the latter we have only the average velocity,
which 1is less powerful as it is not able to describe how the velocity varies in the
time interval.

Obviously, velocity is a vector, as can be seen from Fig.1.1. The direction
of v is always along the tangent of the trajectory at each point. The magnitude
of v is called the speed, which is calculated by the general rule for the norm of
a vector.

v={ol= Vi + v+ v} (1.6)
1.5 Acceleration

As the velocity v (t) is also a function of time t, its time rate can be
defined as the acceleration a :

d
So(te, + d—‘ivzmez ; %vg(weg .7

which is the second order derivative of the trajectory r(t).

_d oL
a(t) = dtv(t)
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: 2 2
d %xz(t)e2+d—

= fm(Des (1.8)

dZ
a(t) = rﬁr(t) = aﬁﬁh(i)él +

s
]

iAs vV

r(+At)=r+Ar

-7 €] ey TTveell_.

Fig.1.1 The definition of velocity.

The magnitude of an acceleration can also be calculated by the general rule
for the norm of a vector, i.e.,

a=lal=+vai+ ai+ ol (1.9
where
_%_dzxi <
2 PV (i=1,2,3) (1.10)

However, the direction of acceleration needs some explanation. Since the

velocity is always in the tangential direction of the trajectory, we can rewrite it
as

v = ve, (1.11)
where v is the speed and e, is the unit vector in the tangential direction. Note
that in this case both factors (v and e,) may vary with time . We then perform
the differentiation on (1.11) to get the acceleration:

_dv de. _ dv de. ds _ dv o2 des _dv o v?
AR T PO P T A P AT
(1.12)

where 0 is the curvature radius of the trajectory at the point, e, is the unit
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vector along the normal direction at the same point, e, and e, are perpendicular
to each other. In deriving (1.12), we have made use of the following facts or

geometrical relations:
_ds de, 1de_ _ 1 ds

YAttt ds  dsds® T ds p
The second formula can be obtained from the additional diagram.

The formula (1.12) indicates that the acceleration is decomposed into two
components. One is along the tangential direction, which determines the change
in speed. The other is in the normal direction, which is responsible for the
change in the direction of the velocity. (see Fig.1.2). If the second component
vanishes, the motion will be along a straight line. In comparison with a circular
motion, we call the second component the centripetal acceleration.

NArAa

a, _pme=e€_ lAe] _ d
& oA = e = g e

(a)

(b)

Fig.1.2 Understanding acceleration.
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1.6 Angular velocity and angular acceleration for
axial rotation

A general rotation in space is rather complicated and can only be our future
topic. Here we confine us to the case of axial rotation, i.e. , the rotation about
an axis which is fixed in space. In this case, the position of an object is defined
by the angle ¢, measured from a given basic line in the plane perpendicular to
the axis. The rotation is then described by the angular velocity, i. e., the
derivative of the angle § with respect to time ¢.
_ df

dt
Angular velocity can also be considered as a

(1.13)

w

vector, its direction is along the axis and the
sign is usually defined by the right hand rule,
depending on whether the rotation is clock-wise
or counterclockwise. From Fig. 1.3, it is easy
to see or = 80 X r, then we have the relation
between angular and linear velocities:
V=@XF (1.14)

Similarly, we can define the angular

acceleration by performing differentiation on

o the angular velocity. For an axial rotation, the
angular acceleration is written as

Y
@ =9 T 4 (1.15)

The quantity describes how the angular velocity is increased or decreased.

Fig.1.3 Infinitesimal rotation.

1.7 Addition of velocity and acceleration

Both velocity and acceleration can be taken as ordinary vector. Thus all
operations in vector algebra, especially the addition, apply to them. However,
we need to understand the corresponding physical situation to the operation.
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The sum of two velocities is another velocity:
U3 = U +U; (1.16)
In physics, this means that if we measure the velocity of the object 1 from the
object 2 to be v, , and the object 2 has a velocity v, with respect to the object 3,
then the velocity of object 1 with respect to the object 3 is v;, or in some cases
if a complicated motion can be decomposed into some simpler motions, we also
need (1.16).
For the acceleration, we have a similar expression;
a; = a, + a, (1.17)
However, the physical situation corresponding to (1.17) may include no other
object. It simply represents a combined action of two forces.

Questions

(1> How many forms of motion { phenomena) do you know in nature? Why the position change is
the simplest one?

(2) Compare the average velocity as defined in lower level physics course with the velocity defined
in this lecture. Which one is more powerful? Why?

(3) Why both velocity and acceleration are called the differential properties of trajectory?

(4) How to understand the trajectory contains all information about the motion?

(58} Can you decompose an acceleration into tangential and normal components? Can you make any
rough estimate to the acceleration of an object if you know the trajectory?

(6) What is the physical situation corresponding to the subtraction of one velocity from another?



Lecture 2 Various Coordinate Systems,
Coordinate Transformation

2.1 Basic concept of coordinate transformation

In mechanics, it is common to change from one reference body to another
or to make another choice of coordinate system for the same reference body.
For example, we may need to change from a Cartesian system to a spherical
system or from one polar system to another. In both cases, we need to perform
coordinate transformation. However, the latter is only a mathematical event,
while the former may bring about some physical consequence, which shall not be
studied in kinematics. Thus the coordinate transformation in kinematics is
basically same as in mathematics, except that the object to be transformed may
have its physical interpretation, say, velocity or acceleration.

2.2 General linear transformation

In Cartesian system, a vector r is represented by a linear combination of
the basic vectors e;. It is then expected that a general coordinate trans-
formation, including both axial rotation and origin shift, should be linear. Since
the basic vectors can also be taken as ordinary vectors, but they are much
simpler, it is then natural to derive the formulas of coordinate transformation
from the relation between the new and old basic vectors. This relation, or the
transformation of basic vectors, is described by the equation:

3
e, = gaﬁei (G =1,2,3) 2.1

where the primed and unprimed e’s are the basic vectors in new and old

coordinate systems. Obviously, the set of coefficients a ; specifies the
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transformation, which can also be cast into a matrix form.
Q. Q2 QAi3
A= |an ax as 2.2
Q31 Q32 Q33
If there is an origin shift, we need to add the coordinate b; of the new origin in
old coordinate system to the corresponding equation in (2.1). The vector b
represents the position of new origin in old system. For a general vector r, we
have
r=Ar+b 2.3
or in component form;:

3
x;' = Djaze; +b; (G=1,2,3) 2.4)
i=1

2.3 Orthogonality of transformation matrix

Since the basic vectors keep their mutual orthogonality under any rotation,
i.e., their scalar products can be written in a Kronecker symbol:

, , 0; if 1 j
€; - ¢€; :Sij:{ . ?é] (2.5)
1; if 2=
This imposes a limitation on the coefficient matrix A. From (2.5) and (2. 1),
we have

3
ah-aﬂ(ek -e;)
1

(Zakiek)' (20/]191): Z

k=

3 3
= Z Lkl = Ea’kiafjk =05 (2.6)
k=1 k=1

This is the condition of orthogonality, so the matrix A is orthogonal.

i
=1
23}
=1

It can be shown that the scalar product of two vectors remains unchanged
under an orthogonal transformation, i.e.,
a b =a-+b (2.7
The proof of (2.7) is straightforward if (2.6) is used to simplify the scalar
product of primed vectors on the left hand side.
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2.4 Velocity in plane polar coordinate system

In a plane polar coordinate system, the two basic vectors are e, and e,
(Fig. 2.1), which are both unit vectors in the direction of increasing the
corresponding coordinate and perpendicular to each other. They are related to
the basic vectors of Cartesian coordinate system by

e, = cosfe; +sinfe,
’ : (2.8)

e, =—sinfe, +cosfe;

xz‘ ey
basic vectors
e,
F 3 p

(2]
o] er > X

Fig.2.1 Plane polar system.

The general vector r is written as:
r=re, (2.9
where e, is the unit vector in the radial direction. The derivative of r with
respect to time t is.

_dr _ dr
U= ar T qer

where in the last step, the derivative of e, is calculated from (2. 8) as
following :

de, _dr , df
+7r T —dte'+rdte” 2.1

de, _ . . dg dg
di - smﬂdtel+cost9dtez

= gg(— sinfe; + cos fe;) = %eg

The two terms of (2. 10) represent the radial and angular velocities,
respectively.

The acceleration is the derivative of v. It can be calculated from (2.10) as
following:



