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Preface

This text is intended as an introduction to elementary probability theory and
stochastic processes. It is particularly well suited for those wanting to see how
probability theory can be applied to the study of phenomena in fields such as engi-
neering, computer science, management science, the physical and social sciences,
and operations research.

It is generally felt that there are two approaches to the study of probability the-
ory. One approach is heuristic and nonrigorous and attempts to develop in the
student an intuitive feel for the subject that enables him or her to “think proba-
bilistically.” The other approach attempts a rigorous development of probability
by using the tools of measure theory. It is the first approach that is employed
in this text. However, because it is extremely important in both understanding
and applying probability theory to be able to “think probabilistically,” this text
should also be useful to students interested primarily in the second approach.

New to This Edition

The tenth edition includes new text material, examples, and exercises chosen not
only for their inherent interest and applicability but also for their usefulness in
strengthening the reader’s probabilistic knowledge and intuition. The new text
material includes Section 2.7, which builds on the inclusion/exclusion identity to
find the distribution of the number of events that occur; and Section 3.6.6 on left
skip free random walks, which can be used to model the fortunes of an investor
(or gambler) who always invests 1 and then receives a nonnegative integral return.
Section 4.2 has additional material on Markov chains that shows how to modify a
given chain when trying to determine such things as the probability that the chain
ever enters a given class of states by some time, or the conditional distribution of
the state at some time given that the class has never been entered. A new remark
in Section 7.2 shows that results from the classical insurance ruin model also hold
in other important ruin models. There is new material on exponential queueing
models, including, in Section 2.2, a determination of the mean and variance of
the number of lost customers in a busy period of a finite capacity queue, as well as
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the new Section 8.3.3 on birth and death queueing models. Section 11.8.2 gives
a new approach that can be used to simulate the exact stationary distribution of
a Markov chain that satisfies a certain property.

Among the newly added examples are 1.11, which is concerned with a multiple
player gambling problem; 3.20, which finds the variance in the matching rounds
problem; 3.30, which deals with the characteristics of a random selection from a
population; and 4.25, which deals with the stationary distribution of a Markov
chain.

Course

Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability
theory (involving Chapters 1-3 and parts of others) or a course in elementary
stochastic processes. The textbook is designed to be flexible enough to be used
in a variety of possible courses. For example, I have used Chapters 5 and 8, with
smatterings from Chapters 4 and 6, as the basis of an introductory course in
queueing theory.

Examples and Exercises

Many examples are worked out throughout the text, and there are also a large
number of exercises to be solved by students. More than 100 of these exercises
have been starred and their solutions provided at the end of the text. These starred
problems can be used for independent study and test preparation. An Instructor’s
Manual, containing solutions to all exercises, is available free to instructors who
adopt the book for class.

Organization

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 an
axiomatic framework is presented, while in Chapter 2 the important concept of
a random variable is introduced. Subsection 2.6.1 gives a simple derivation of
the joint distribution of the sample mean and sample variance of a normal data
sample.

Chapter 3 is concerned with the subject matter of conditional probability and
conditional expectation. “Conditioning” is one of the key tools of probability
theory, and it is stressed throughout the book. When properly used, conditioning
often enables us to easily solve problems that at first glance seem quite diffi-
cult. The final section of this chapter presents applications to (1) a computer list
problem, (2) a random graph, and (3) the Polya urn model and its relation to
the Bose-Einstein distribution. Subsection 3.6.5 presents k-record values and the
surprising Ignatov’s theorem,
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In Chapter 4 we come into contact with our first random, or stochastic, pro-
cess, known as a Markov chain, which is widely applicable to the study of many
real-world phenomena. Applications to genetics and production processes are
presented. The concept of time reversibility is introduced and its usefulness illus-
trated. Subsection 4.5.3 presents an analysis, based on random walk theory, of a
probabilistic algorithm for the satisfiability problem. Section 4.6 deals with the
mean times spent in transient states by a Markov chain. Section 4.9 introduces
Markov chain Monte Carlo methods. In the final section we consider a model
for optimally making decisions known as a Markovian decision process.

In Chapter § we are concerned with a type of stochastic process known as a
counting process. In particular, we study a kind of counting process known as
a Poisson process. The intimate relationship between this process and the expo-
nential distribution is discussed. New derivations for the Poisson and nonhomo-
geneous Poisson processes are discussed. Examples relating to analyzing greedy
algorithms, minimizing highway encounters, collecting coupons, and tracking
the AIDS virus, as well as material on compound Poisson processes, are included
in this chapter. Subsection 5.2.4 gives a simple derivation of the convolution of
exponential random variables,

Chapter 6 considers Markov chains in continuous time with an emphasis on
birth and death models. Time reversibility is shown to be a useful concept, as it
is in the study of discrete-time Markov chains. Section 6.7 presents the compu-
tationally important technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of counting
process more general than the Poisson. By making use of renewal reward pro-
cesses, limiting results are obtained and applied to various fields. Section 7.9
presents new results concerning the distribution of time until a certain pattern
occurs when a sequence of independent and identically distributed random vari-
ables is observed. In Subsection 7.9.1, we show how renewal theory can be used
to derive both the mean and the variance of the length of time until a specified
pattern appears, as well as the mean time until one of a finite number of specified
patterns appears. In Subsection 7.9.2, we suppose that the random variables are
equally likely to take on any of # possible values, and compute an expression
for the mean time until a run of m distinct values occurs. In Subsection 7.9.3, we
suppose the random variables are continuous and derive an expression for the
mean time until a run of » consecutive increasing values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some prelimi-
naries dealing with basic cost identities and types of limiting probabilities, we
consider exponential queueing models and show how such models can be ana-
lyzed. Included in the models we study is the important class known as a network
of queues. We then study models in which some of the distributions are allowed to
be arbitrary. Included are Subsection 8.6.3 dealing with an optimization problem
concerning a single server, general service time queue, and Section 8.8, concerned
with a single server, general service time queue in which the arrival source is a
finite number of potential users.
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Chapter 9 is concerned with reliability theory. This chapter will probably be
of greatest interest to the engineer and operations researcher. Subsection 9.6.1
illustrates a method for determining an upper bound for the expected life of a
parallel system of not necessarily independent components and Subsection 9.7.1
analyzes a series structure reliability model in which components enter a state of
suspended animation when one of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its
relationship to the duality theorem of linear programming is indicated. We show
how the arbitrage theorem leads to the Black-Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic
models that are analytically intractable. Methods for generating the values of
arbitrarily distributed random variables are discussed, as are variance reduction
methods for increasing the efficiency of the simulation. Subsection 11.6.4 intro-
duces the valuable simulation technique of importance sampling, and indicates
the usefulness of tilted distributions when applying this method.
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Introduction to
Probability Theory

1.1 Introduction

Any realistic model of a real-world phenomenon must take into account the possi-
bility of randomness. That is, more often than not, the quantities we are interested
in will not be predictable in advance but, rather, will exhibit an inherent varia-
tion that should be taken into account by the model. This is usually accomplished
by allowing the model to be probabilistic in nature. Such a model is, naturally
enough, referred to as a probability model.

The majority of the chapters of this book will be concerned with different
probability models of natural phenomena. Clearly, in order to master both the
“model building” and the subsequent analysis of these models, we must have a
certain knowledge of basic probability theory. The remainder of this chapter, as
well as the next two chapters, will be concernéd with a study of this subject.

1.2 Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not
predictable in advance. However, while the outcome of the experiment will not
be known in advance, let us suppose that the set of all possible outcomes is known.
This set of all possible outcomes of an experiment is known as the sample space
of the experiment and is denoted by S.
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