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Meet python
Everyone loves lists

You’re asking one question: “What makes Python different?”
The short answer is: lots of things. The longer answers starts by stating that there’s
lots that’s familiar, too. Python is a lot like any other general-purpose programming
language, with statements, expressions, operators, functions, modules, methods,
and classes. All the usual stuff, really. And then there's the other stuff Python provides
that makes the programmer’s life—your life—that little bit easier. You'll start your tour
of Python by learning about lists. But, before getting to that, there’s another important

question that needs answering...
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sharing your code
Modules of functions

Reusable code is great, but a shareable module is better.

By sharing your code as a Python module, you open up your code to the entire Python
community...and it's always good to share, isn't it? In this chapter, you'll learn how to
create, install, and distribute your own shareable modules. You'll then load your module
onto Python’s software sharing site on the Web, so that everyone can benefit from your

work. Along the way, you'll pick up a few new tricks relating to Python’s functions, too.
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files and exceptions
Dealing with errors

It’s simply not enough to process your list data in your code.
You need to be able to get your data into your programs with ease, too. It's no surprise
then that Python makes reading data from files easy. Which is great, until you
consider what can go wrong when interacting with data external to your programs. ..
and there are lots of things waiting to trip you up! When bad stuff happens, you need a
strategy for getting out of trouble, and one such strategy is to deal with any exceptional

situations using Python’s exception handling mechanism showcased in this chapter.
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persistence
Saving data to files

Itis truly great to be able to process your file-based data.
But what happens to your data when you're done? Of course, it's best to save your
data to a disk file, which allows you to use it again at some later date and time. Taking
your memory-based data and storing it to disk is what persistence is all about. Python
supports all the usual tools for writing to files and also provides some cool facilities for

efficiently storing Python data.

Programs produce data 106
Open your file in write mode 110
Files are left open after an exception! 114
Extend try with finally 115
Knowing the type of error is not enough 117
Use with to work with files 120
Default formats are unsuitable for files 124
Why not modify print_lol()? 126
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ogmpre}]enc[i’ng data
Work that data!

Data comes in all shapes and sizes, formats and encodings.
To work effectively with your data, you often have to manipulate and transform it into a
common format to allow for efficient processing, sorting, and storage. In this chapter,
you'll explore Python goodies that help you work your data up into a sweat, allowing

you to achieve data-munging greatness.

Coach Kelly needs your help 140
Sort in one of two ways 144
The trouble with time 148
Comprehending lists 155
Iterate to remove duplicates 161
Remove duplicates with sets 166
Your Python Toolbox - 172

This chapter's
guaranteed to give you
a workout!
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custom data objects
Bundling code with data

It’s important to match your data structure choice to your data.
And that choice can make a big difference to the complexity of your code. In Python,

although really useful, lists and sets aren't the only game in town. The Python dictionary
lets you organize your data for speedy lookup by associating your data with names, not
numbers. And when Python’s built-in data structures don’t quite cut it, the Python class

statement lets you define your own. This chapter shows you how.
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web development
Putting it all together

Sooner or later, you’ll want to share your app with lots of people.
You have many options for doing this. Pop your code on PyPI, send out lots of emails, put
your code on a CD or USB, or simply install your app manually on the computers of those
people who need it. Sounds like a lot of work...not to mention boring. Also, what happens
when you producev the next best version of your code? What happens then? How do

you manage the update? Let's face it: it's such a pain that you'll think up really creative
excuses not to. Luckily, you don’t have to do any of this: just create a webapp instead. And,

as this chapter demonstrates, using Pyth_on for web development is a breeze.

It’s good to share 214
You can put your program on the Web 215
What does your webapp need to do? 218
Design your webapp with MVC 221
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| For now, all that you'll find here is my athlete's timing data. Enjoy!

See you on the track!
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mobile app development
Small devices

Putting your data on the Web opens up all types of possibilities.
Not only can anyone from anywhere interact with your webapp, but they are increasingly
doing so from a collection of diverse computing devices: PCs, laptops, tablets, palmtops,
and even mobile phones. And it's not just humans interacting with your webapp that

you have to support and worry about: bots are small programs that can automate web
interactions and typically want your data, not your human-friendly HTML. In this chapter,
you exploit Python on Coach Kelly’s mobile phone to write an app that interacts with your

webapp’s data.
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manage your data
Handling input
The Web and your phone are not just great ways to display data.

They are also great tools to for accepting input from your users. Of course, once your
webapp accepts data, it needs to put it somewhere, and the choices you make when
deciding what and where this “somewhere” is are often the difference between a webapp
that’s easy to grow and extend and one that isn’t. In this chapter, you'll extend your
webapp to accept data from the Web (via a browser or from an Android phone), as well

as look at and enhance your back-end data-management services.
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scaling your webapp
Getting real
The Web is a great place to host your app...until things get real.

Sooner or later, you'll hit the jackpot and your webapp will be wildly successful. When
that happens, your webapp goes from a handful of hits a day to thousands, possibly ten
of thousands, or even more. Will you be ready? Will your web server handle the load?
How will you know? What will it cost? Who will pay? Can your data model scale to
millions upon millions of data items without slowing to a craw/? Getting a webapp up and
running is easy with Python and now, thanks to Google App Engine, scaling a Python
webapp is achievable, too.

There are whale sightings everywhere 352
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dealing with complexity
Data wrangling

It’s great when you can apply Python to a specific domain area.
Whether it's web development, database management, or mobile apps, Python helps
you get the job done by not getting in the way of you coding your solution. And then
there’s the other types of problems: the ones you can’t categorize or attach to a domain.
Problems that are in themselves so unique you have to look at them in a different, highly
specific way. Creating bespoke software solutions to these type of problems is an area
where Python excels. In this, your final chapter, you'll stretch your Python skills to the

limit and solve problems along the way.
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1 meet python *

« Everyone loves lists *

Yes, yes...we have lots
of Pythons in stock... L'll
just make a quick list.

You’re asking one question: “What makes Python different?”
The short answer is: lots of things. The longer answers starts by stating that there’s lots
that’s familiar, too. Python is a lot like any other general-purpose programming language,
with statements, expressions, operators, functions, modules, methods, and classes.
All the usual stuff, really. And then there’s the other stuff Python provides that makes

the programmer’s life—your life—that little bit easier. You'll start your tour of Python by

learning about lists. But, before getting to that, there’s another important question that
needs answering...

this is a new chapter



python greatness

What’s to like about Python?

Lots. Rather than tell you, this book’s goal is to show you the greatness that is

Python.

Yeah... I need something that I can deploy
on PCs, Macs, handhelds, phones,the Web,
on big servers and small clients...and it has
to let me build GUIs quickly and painlessly...
OK, yes, yeah, I'm listening... What?!?
You're kidding! Python can do all that?

Before diving head first into Python, let’s get a bit of housekeeping out of
the way.

To work with and execute the Python code in this book, you need a copy of
the Python 3 interpreter on your computer. Like a lot of things to do with

Python, it’s not difficult to install the interpreter. Assuming, of course, it’s not
already there...

2 Chapter 1



