Nk mPython (EDRR)

Head First

Oll

@A | Model data
P with lists,
§ sets, and
dictionaries

Load impbrta.nt
programming concepts
directly into your brain

Hook up with
JSON, Android, |
and App Engine i

Preserve
your data | S
in a pickle M

Move yo'f custom
app to the Web

the world on PyPI

OREILLY® 2 &K% HARAL, Paul Barry Z

RNt Python (%)
Head First Python

Wouldn't it be dreamy if there
were a Python book that didn't
make you wish you were anywhere
0 other than stuck in front of your
computer writing code? I guess it's
Jjust a fantasy...

Paul Barry

O'REILLY"

Beijing * Cambridge * Kbln + Sebastopol *+ Tokyo
O'Reilly Media, Inc. # 4L & # X % & B4L K
REXFHRE

EBERSE (CIP) #iE

R Python: 332/ (%) ELH (Bamy,P.) #.—
SCENA . —F3 . ZREREHAREE, 20115

F54 i3 : Head First Python

ISBN 978-7-5641-2675-9

1 O 1L OE-- L Ok T H—-BFikit
—#3r IV. ® TP311.56

H R A B A5 1 CIP Bty (2011) 58 042748 5

LI ERRBURZEERLA TR R D
El5 . 10-2010-439 =

©2010 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2011. Authorized reprint of the original English edition, 2010 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

% X R ¥ &g O'Reilly Media, Inc. # #& 2010,

FXHPRRE A d K F B R AR 2011, S R &Y ok B Ao 4K B AT B MR ALAe 4 B AL E BT A
—— O'Reilly Media, Inc. ##4T ,

AR, A B EHFT, A3 GEATIRD o o3 AT VBT A X E 4,

A Python (ZENR)

HiREAT: ek R
#o ohb. FERPUMEE2 5 B4 : 210096
ok A IR
Pl 3ik . http://www.seupress.com
B, f-#i {4 : press@seupress.com
En Rl 4 o T ED R R 2
A. 787 F K x 980K 12 F A
gk. 41.5 5k
. 694 T
. 201145 A% 1 IR
K. 20114 5 A% 1 RENRI
5 : ISBN 978-7-5641-2675-9
fr: 88.005% (M) |
FHEEFENRRREE, EEHSEERSEEA. BiE (5H): 025-83792328

B IFHHIH

table of contents

Table of Contents (Summary)

Intro xxiii
1 Meet Python: Everyone Loves Lists 1
2 Sharing Your Code: Modules of Functions 33
3 Files and Exceptions: Dealing with Errors 73
4 Persistence: Saving Data to Files 105
5 Comprehending Data: Work That Data! 139
6 Custom Data Objects: Bundling Code with Data 173
7 Web Development: Putting It All Together 213
8 Mobile App Development: Small Devices 255
9 Manage Your Data: Handling Input 293
10 Scaling Your Webapp: Getting Real 351
11 Dealing with Complexity: Data Wrangling 397
i Leftovers: The Top Ten Things (We Didn’t Cover) 435

Table of Contents (the rea] thing)

intro

Your brain on Python. Here you are trying to learn something, while
here your brain is doing you a favor by making sure the learning doesn't stick.
Your brain’s thinking, “Better leave room for more important things, like which
wild animals to avoid and whether naked snowboarding is a bad idea.” So how

do you trick your brain into thinking that your life depends on knowing Python?

Who is this book for? XXiv
We know what you’re thinking XXV
Metacognition xxvii
Bend your brain into submission XXix
Read me XXX
The technical review team xxxii
Acknowledgments xxxiii

ix

table of contents

Meet python
Everyone loves lists

You’re asking one question: “What makes Python different?”
The short answer is: lots of things. The longer answers starts by stating that there’s
lots that’s familiar, too. Python is a lot like any other general-purpose programming
language, with statements, expressions, operators, functions, modules, methods,
and classes. All the usual stuff, really. And then there's the other stuff Python provides
that makes the programmer’s life—your life—that little bit easier. You'll start your tour
of Python by learning about lists. But, before getting to that, there’s another important

question that needs answering...

What'’s to like about Python? 2
Install Python 3 3
Use IDLE to help learn Python 4
Work effectively with IDLE 5
Deal with complex data 6
Create simple Python lists 7
Lists are like arrays 9
Add more data to your list 11
Work with your list data 15
For loops work with lists of any size 16
Store lists within lists 18
Check a list for a list 20
Complex data is hard to process 23
Handle many levels of nested lists 24
Don’t repeat code; create a function 28
Create a function in Python 29
Recursion to the rescue! 31

Your Python Toolbox 32

PR R

The Holy Grail, 1975, Tevry Jones £ Terry Gilliam, 9] wins

évaham C"\a\’"‘a“
Michael Palin,

John Cleese, Terry Gilliam, Evie |dle ¢ Tervy Jones

table of contents

sharing your code
Modules of functions

Reusable code is great, but a shareable module is better.

By sharing your code as a Python module, you open up your code to the entire Python
community...and it's always good to share, isn't it? In this chapter, you'll learn how to
create, install, and distribute your own shareable modules. You'll then load your module
onto Python’s software sharing site on the Web, so that everyone can benefit from your

work. Along the way, you'll pick up a few new tricks relating to Python’s functions, too.

It’s too good not to share 34
Turn your function into a module 35
Modules are everywhere 36
Comment your code 37
Prepare your distribution 40
Build your distribution 41
A quick review of your distribution 42
Import a module to use it 43
Python’s modules implement namespaces 45
Register with the PyPI website 47
Upload your code to PyPI 48
Welcome to the PyPI community 49
Control behavior with an extra argument 52
Before your write new code, think BIF 53
Python tries its best to run your code 57
Trace your code 58
Work out what’s wrong 59
Update PyPI with your new code 60
You’ve changed your API 62
Use optional arguments 63
Your module supports both APIs 65
Your API is still not right 66
Your module’s reputation is restored 70
BEBLEE R Your Python Toolbox 71

setup.py

Xi

table of contents

files and exceptions
Dealing with errors

It’s simply not enough to process your list data in your code.
You need to be able to get your data into your programs with ease, too. It's no surprise
then that Python makes reading data from files easy. Which is great, until you
consider what can go wrong when interacting with data external to your programs. ..
and there are lots of things waiting to trip you up! When bad stuff happens, you need a
strategy for getting out of trouble, and one such strategy is to deal with any exceptional

situations using Python’s exception handling mechanism showcased in this chapter.

Data is external to your program 74

It’s all lines of text 75

Take a closer look at the data 77

Know your data 79

Know your methods and ask for help 80

Know your data (better) 82

Two very different approaches 83

Add extra logic 84

Handle exceptions 88

Try first, then recover 89

Identify the code to protect 91

Take a pass on the error 93

What about other errors? 96

Add more error-checking code... 97

...Or add another level of exception handling 98

So, which approach is best? . 99
* You’re done...except for one small thing 101
Be specific with your exceptions 102
Split (besns) Your Python Toolbox 103

xii

table of contents

persistence
Saving data to files

Itis truly great to be able to process your file-based data.
But what happens to your data when you're done? Of course, it's best to save your
data to a disk file, which allows you to use it again at some later date and time. Taking
your memory-based data and storing it to disk is what persistence is all about. Python
supports all the usual tools for writing to files and also provides some cool facilities for

efficiently storing Python data.

Programs produce data 106
Open your file in write mode 110
Files are left open after an exception! 114
Extend try with finally 115
Knowing the type of error is not enough 117
Use with to work with files 120
Default formats are unsuitable for files 124
Why not modify print_lol()? 126
Pickle your data 132
Save with dump and restore with load 133
Generic file I70 with pickle is the way to go! 137
Your Python Toolbox 138

s this the rigl
argument?', "No you haven't!",
'When?', "No you didn't!", "You
didn't!", 'You did not!', 'Ah!
(taking out his wallet and paying)
Just the five minutes.', 'You most
certainly did not!', "Oh no you
didn't!", "Oh no you didn't!", "Oh
look, this isn't an argument!",

"No it isn't!", "It's just
contradiction!", 'It IS!', 'You
just contradicted me!', 'You DID!',

room for an

You did just then!', ' (exasperated) |
Oh, this is futile!!',K 'Yes it
is!']

Xiii

table of contents

ogmpre}]enc[i’ng data
Work that data!

Data comes in all shapes and sizes, formats and encodings.
To work effectively with your data, you often have to manipulate and transform it into a
common format to allow for efficient processing, sorting, and storage. In this chapter,
you'll explore Python goodies that help you work your data up into a sweat, allowing

you to achieve data-munging greatness.

Coach Kelly needs your help 140
Sort in one of two ways 144
The trouble with time 148
Comprehending lists 155
Iterate to remove duplicates 161
Remove duplicates with sets 166
Your Python Toolbox - 172

This chapter's
guaranteed to give you
a workout!

Xiv

table of contents

custom data objects
Bundling code with data

It’s important to match your data structure choice to your data.
And that choice can make a big difference to the complexity of your code. In Python,

although really useful, lists and sets aren't the only game in town. The Python dictionary
lets you organize your data for speedy lookup by associating your data with names, not
numbers. And when Python’s built-in data structures don’t quite cut it, the Python class

statement lets you define your own. This chapter shows you how.

Coach Kelly is back (with a new file format) 174
Use a dictionary to associate data 178
Bundle your code and its data in a class 189
Define a class 190
Use class to define classes 191
The importance of self 192
Every method’s first argument is self 193
Inherit from Python’s built-in list 204
Coach Kelly is impressed 211
Your Python Toolbox 212

Xv

table of contents

web development
Putting it all together

Sooner or later, you’ll want to share your app with lots of people.
You have many options for doing this. Pop your code on PyPI, send out lots of emails, put
your code on a CD or USB, or simply install your app manually on the computers of those
people who need it. Sounds like a lot of work...not to mention boring. Also, what happens
when you producev the next best version of your code? What happens then? How do

you manage the update? Let's face it: it's such a pain that you'll think up really creative
excuses not to. Luckily, you don’t have to do any of this: just create a webapp instead. And,

as this chapter demonstrates, using Pyth_on for web development is a breeze.

It’s good to share 214
You can put your program on the Web 215
What does your webapp need to do? 218
Design your webapp with MVC 221
Model your data 222
View your interface 226
Control your code 234
CGI lets your web server run programs 235
Display the list of athletes 236
The dreaded 404 error! 242
Create another CGI script 244
Enable CGI tracking to help with errors 248
A small change can make all the difference 250
Your webapp’s a hit! 252
Your Python Toolbox 253

Welcome to Coach Kelly's Website.
| For now, all that you'll find here is my athlete's timing data. Enjoy!

See you on the track!

xvi

table of contents

mobile app development
Small devices

Putting your data on the Web opens up all types of possibilities.
Not only can anyone from anywhere interact with your webapp, but they are increasingly
doing so from a collection of diverse computing devices: PCs, laptops, tablets, palmtops,
and even mobile phones. And it's not just humans interacting with your webapp that

you have to support and worry about: bots are small programs that can automate web
interactions and typically want your data, not your human-friendly HTML. In this chapter,
you exploit Python on Coach Kelly’s mobile phone to write an app that interacts with your

webapp’s data.

The world is getting smaller 256
Coach Kelly is on Android 257
Don’t worry about Python 2 259
Set up your development environment 260
Configure the SDK and emulator _ 261
Install and configure Android Scripting 262
Add Python to your SL4A installation 263
Test Python on Android 264
Define your app’s requirements 266
The SL4A Android API 274
Select from a list on Android 278
The athlete’s data CGI script 281
The data appears to have changed type 284
JSON can’t handle your custom datatypes 285
Run your app on a real phone 288
Configure AndFTP 289
The coach is thrilled with his app 290
Your Python Toolbox 291

XVii

table of contents

manage your data
Handling input
The Web and your phone are not just great ways to display data.

They are also great tools to for accepting input from your users. Of course, once your
webapp accepts data, it needs to put it somewhere, and the choices you make when
deciding what and where this “somewhere” is are often the difference between a webapp
that’s easy to grow and extend and one that isn’t. In this chapter, you'll extend your
webapp to accept data from the Web (via a browser or from an Android phone), as well

as look at and enhance your back-end data-management services.

Your athlete times app has gone national 294

Use a form or dialog to accept input 295

Create an HTML form template 296

The data is delivered to your CGI script 300

Ask for input on your Android phone 304

It’s time to update your server data 308

Avoid race conditions 309

You need a better data storage mechanism 310

Use a database management system 312

Python includes SQLite 313

Exploit Python’s database API 314

The database API as Python code 315

A little database design goes a long way 316
Define your database schema 317

q What does the data look like? 318
Transfer the data from your pickle to SQLite 321

What ID is assigned to which athlete? 322
Insert your timing data 323

SQLite data management tools 326

Integrate SQLite with your existing webapp 327

You still need the list of names 332

Get an athlete’s details based on ID 333

You need to amend your Android app, too 342

Update your SQLite-based athlete data 348

The NUAC is over the moon! 349

Your Python Toolbox 350

xviii

table of contents

scaling your webapp
Getting real
The Web is a great place to host your app...until things get real.

Sooner or later, you'll hit the jackpot and your webapp will be wildly successful. When
that happens, your webapp goes from a handful of hits a day to thousands, possibly ten
of thousands, or even more. Will you be ready? Will your web server handle the load?
How will you know? What will it cost? Who will pay? Can your data model scale to
millions upon millions of data items without slowing to a craw/? Getting a webapp up and
running is easy with Python and now, thanks to Google App Engine, scaling a Python
webapp is achievable, too.

There are whale sightings everywhere 352
The HFWWG needs to automate 353
Build your webapp with Google App Engine 354
Download and install App Engine 355
Make sure App Engine is working 356
App Engine uses the MVC pattern 359
Model your data with App Engine 360
What good is a model without a view? 363
Use templates in App Engine 364
Django’s form validation framework 368
Check your form 369
Controlling your App Engine webapp 370
Restrict input by providing options 376
Meet the “blank screen of death” 378
Process the POST within your webapp 379
Put your data in the datastore 380
Don’t break the “robustness principle” 384
Accept almost any date and time 385
It looks like you’re not quite done yet 388
Sometimes, the tiniest change can make all the difference... 389
Capture your user’s Google ID, too 390
Deploy your webapp to Google’s cloud 391
Your HFWWG webapp is deployed! 394
Your Python Toolbox 395

Xix

table of contents

dealing with complexity
Data wrangling

It’s great when you can apply Python to a specific domain area.
Whether it's web development, database management, or mobile apps, Python helps
you get the job done by not getting in the way of you coding your solution. And then
there’s the other types of problems: the ones you can’t categorize or attach to a domain.
Problems that are in themselves so unique you have to look at them in a different, highly
specific way. Creating bespoke software solutions to these type of problems is an area
where Python excels. In this, your final chapter, you'll stretch your Python skills to the

limit and solve problems along the way.

What’s a good time goal for the next race? 398
So...what’s the problem? 400
Start with the data 401
Store each time as a dictionary 407
Dissect the prediction code 409
Get input from your user 413
Getting input raises an issue... 414
Search for the closest match 416
The trouble is with time 418
The time-to-seconds-to-time module 419
The trouble is still with time... 422
Port to Android 424
Your Android app is a bunch of dialogs 425
Put your app together... 429
Your app’s a wrap! 431
Your Python Toolbox 432

File Edit View thsen Format Form Tocks Help
oo o e &S % 123 opte [Wlam A By @ E~ 0o E-

Formula; V02

B < :] E ¥ G H
12 829 811 79.3 775 75.8 142
2 2w 8:00 8:10 B:21 8:33 | Bdd 856 9:08
3 5k 12:49 13:06 13:24 13:42 14:00 14:19 14:38
4 Smi 21:19 21:48 2217 22:47 23:18 | 23:50 24:22
5 10k 26:54 27:30 25:08 28:45 29:24 30:04 30:45
6 15k 4131 42:27 43:24 $4:23 45:23 46:24 47:27
7 10mi 4446 45:46 46:48 47:51 48.56 150:02 51:09
8 20k | 56:29 57:45 50:03 1:00:23 11:09:45 [1:03:08 1:04:33
B 13.4mi 59:49 1:01:09 1:02:32 1:03:56 1:05:23 1:06:51 1:08:21
10 25k 1:11:43 1:13:20
1t 30k AT 1:19:08

XX

1 meet python *

« Everyone loves lists *

Yes, yes...we have lots
of Pythons in stock... L'll
just make a quick list.

You’re asking one question: “What makes Python different?”
The short answer is: lots of things. The longer answers starts by stating that there’s lots
that’s familiar, too. Python is a lot like any other general-purpose programming language,
with statements, expressions, operators, functions, modules, methods, and classes.
All the usual stuff, really. And then there’s the other stuff Python provides that makes

the programmer’s life—your life—that little bit easier. You'll start your tour of Python by

learning about lists. But, before getting to that, there’s another important question that
needs answering...

this is a new chapter

python greatness

What’s to like about Python?

Lots. Rather than tell you, this book’s goal is to show you the greatness that is

Python.

Yeah... I need something that I can deploy
on PCs, Macs, handhelds, phones,the Web,
on big servers and small clients...and it has
to let me build GUIs quickly and painlessly...
OK, yes, yeah, I'm listening... What?!?
You're kidding! Python can do all that?

Before diving head first into Python, let’s get a bit of housekeeping out of
the way.

To work with and execute the Python code in this book, you need a copy of
the Python 3 interpreter on your computer. Like a lot of things to do with

Python, it’s not difficult to install the interpreter. Assuming, of course, it’s not
already there...

2 Chapter 1

